
 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
1 

  

DESIGNING A LOAD BALANCING FRAMEWORK FOR EFFICIENT 

SERVER-SIDE COMPUTATION ACCESS  

  

Nwankwo Ifeanyi Kelechi and Opara Juliet Ngozi 
 

 

 

Department of Computer Science, Rivers 

State University, Port Harcourt, Nigeria 
DOI:https://doi.org/ 10.5281/zenodo.15430434 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.  Introduction  

In a disseminated computing environment, the term Load Balancing (LB) refers to a process of visibly and 

intuitively sharing computational resources e.g. network bandwidth, CPU cycles, memory threads, storage 

space, etc. by routing access requests to certain resources from users or computers at a particular time to 

specific systems (Wang, 2015). In real world, a workstation user may not use the machine always, however, 

he might need more than just the machine during active working time. It’s important to know that some 

resources may be heavily loaded, while others are lying idle. Improving on performance is one of the most 

important issues in circulated systems. The overall performance of the system can often be enhanced to a 

suitable level just by distributing the workload among the machines. (Kris et al 2015).  

 How user’s job is being processed is an issue of major concern as there is always lots of jobs in queue within 

the computing situation leaving the systems in a complex scenario. The truth is that every user often desires 

his jobs processed and finished as quickly as possible, and in events where the computing systems are over 

loaded, the chances of possible bottlenecks are on the rise while system resources are being allocated. 

Abstract: The computational (server) environment has been 

faced with several challenges during operations of the 

cooperating computing systems with adverse outcome. The 

resultant effect is the gradual slowdown of the performance 

of the system in attending to user requests, drop in response 

time, hang and crash issues among others. Some of these 

issues occur when the server is no longer responding to users 

request or the server becomes irresponsive to user actions; all 

these cause the system to fail. Deadlock during computation 

is also an aspect of the challenges caused on the server as 

different users compete for resources held by other users. This 

research presents a framework for implementation of load 

balance access in a computational (server) environment. This 

is achieved by identifying factors leading to load imbalance, 

determining the degree of imbalance, developing a 

framework that will reduce imbalance. Computing an average 

neighborhood load balancing using a 10% trigger on the 

server while checking for situations when the server is 

overloaded, under loaded and loaded. The average 

neighborhood was used to achieve this and the system was 

implemented with visual C#. The system achieved an efficient 

load balancing process using the average neighborhood load 

balancing method.  

Keywords: Load Balancing, Computational Environment, 

Average Neighbourhood Algorithm.   



 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
2 

  

Whenever Load Balancing is implemented within a computing environment, the major aim has always been 

to deliver high availability of resources (Aditya, 2015). However, the current approaches used in load 

balancing has too much overhead to contend with, therefore cannot withstand impasses when too much 

access demand to same resource are coming in per second and limited resource is available to service the 

request in queue (Zhao, 2013). This paper presents a framework for implementation of load balance access 

in a computational environment.  

2. Related Literature  

In a server environment, load balancing is a framework that is used to share workload evenly across nodes.  

When used in a computing environment, load balancing guarantees improved performance as well greater 

user satisfaction and resource usage ratio, ensuring that a server (node) is not overloaded. The outcome 

enhances overall performance of the machine. When properly implemented, load balancing can help in 

optimal utilization of the available server resources, hence, minimizes resource consumption rate. It can as 

well be used as a means of implementing fail-over, allowing for system scalability, get rid of bottlenecks and 

overprovisioning, leading to reduced response time, etc. (Chana, 2012).  

Load balancing is very common in web and database access, Dynamic Name Server (DNS) and name 

resolution, storages, network bandwidth consumption, and packet routing. With no load balancing in place, 

chances are very high users will experience serious delays, processing timeouts and possible sustained high 

latency. Load balancing relates with networking by allowing the deployment of redundant servers to enable 

spread of communication traffic from services, like Web, DNS, etc. on a pool of servers (Chaczko, 2011). In 

a situation where two or more distributed computing machines are made to communicate to each other via a 

network, chances of resource sharing are very high and is feature that will be desired. Additionally, there will 

be a benefit of performance improvement for the servers as a result of sharing their computational power 

(CPU), apart from the traditional data, I/O sharing. Load balancing serves as a mechanism which allows job 

requests to be moved from one server to the other inside the distributed system, this creating a much faster 

job servicing like minimizing job response time and optimizing resource usage. Several findings have 

revealed that load balancing between computing devices within distributed system improves the overall 

performance hugely with corresponding improvement in resource utilization. There are two kinds of load 

balancing algorithms, namely, static and dynamic.  

Load balancing policies in static algorithms are largely centered around information on average system’s 

behavior, while transfer decisions are based on the real current state of the system. The static load balancing 

patterns rely on prior understanding of applications and statistical data of the system to reach its decisions. 

Static load balancing algorithm determines the performance of each CPU at the start of execution, afterwards, 

depending on their levels of performance, computing task is allotted by the controlling (master) CPU.  Other 

CPUs (slaves) then compute the task assigned them and send their results back to the controller. On the other 

side, static load balancing scheme has its own problem, and that is, once a processor has been selected to 

handle a task, that decision is final. The selection cannot be altered when a process is being executed to allow 

for modifications on how the system is loaded (Rajguru, 2000). However, in dynamic load balancing 

algorithms, the load is allocated among the processors during the execution time. The controller allots new 

processes to the slaves using newly gotten information. Dynamic load balancing clearly has the edge over its 

static counterpart in terms of adjustment. The constant monitoring makes use of CPU cycles, so, care has to 

be taken by way of when it should be called, because the redistribution introduces additional CPU overhead 

at runtime (Wang, 2015).  



 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
3 

  

3. Methodology  

To successfully achieve the task of load balancing in a computational environment, constructive research and 

Object-Oriented Analysis and Design was used for this paper.  

Constructive research method is an important research procedure in computer science. This approach solves 

problem through the construction or use of models, diagrams, etc. This research technique is commonly used 

in operations analysis, mathematics, technical sciences, and clinical medicine and in operations research 

(Eero et al, 1993). On the other hand, Object – Oriented Analysis and Design when applied leads to object 

oriented disintegration and is flexible to change with greater level of confidence. Its model of interaction 

represents interesting entity of the system being modeled. It uses the unified modeling language to represent 

these models (Booch et al, 2007), (Roebuch, 2011).  

  

3.1   Load Balancer Structure  

  
Figure 1 Architecture components for AvNA  

This is the system architecture showing were the Average Neighbourhood Algorithm (AvNA) is implemented 

in the server environment. The signal goes through the input module to the algorithm dispatcher (where 

AvNA resides). After balancing, the multiplexer and demultiplexer will convert the signal to a digital base to 

ensure proper workload balancing is deployed/ distributed to the content base routing before allocation to a 

particular client/node.  

4. Proposed Implementation of Load Balance Access in Computational (Server) Environment  

This system consists of three models: the client, the server and the load balancer. The clients are the users of 

the system while the server is the location from where the client retrieves information. The load balancer 

interfaces between the client and the server directing client required information to the available server. This 

load balancer uses the Average Neighbourhood Algorithm (AvNA) to balance the load coming into the server. 

The proposed AvNA is inspired by the honey bee load balancing algorithm that switches jobs from 

overloaded Virtual Machines (VM) taking the decision of submitting them to one of the underloaded VMs 

which is regarded as the destination of the honey bee.  

4.1   Average Neighbourhood Algorithm  

The proposed framework for load balancing (LB) uses AvNA to distribute workload among available servers 

to avoid a scenario of servers being overloaded (over-utilized) and underloaded (under-utilized). It calculates 

the initial work load and divides by the number of available servers in the computational environment and 

multiplies the result by the average percentage of the workload. This is achieved when the initial workload 



 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
4 

  

is greater than the trigger point of 10% then the LB Algorithm (_AvNA) will be triggered for the load to be 

balanced and the balanced average workload will be redistributed among the available servers. Table 1 shows 

the notations used in the LB algorithm  

Table 1. The notations used in the Average Neighbourhood Load Balancing Algorithm   

S/N  SYMBOL  NOTATION  

1  Virtual Machines: (VM)  

  

Average nodes. Nodes operating within a running 

server environment.  

2  host (i)       {server}  The host number i: Number of the overloaded load  

3  PThost(i)  Processing time of host(i)    

4  PTVM(j)  Processing time of Virtual Machine (j)  

5  TLhost(i)  Total length of tasks submitted to host(i)   

6  TLVM(j)  Total length of tasks submitted to VM(j)  

7  VM (j)  The VM number i  

8  Sv  The server  

9  PTAvg_host    

  

The computational environment consists of a set of servers or virtual machines which also contains load 

balancer and is responsible to find suitable host and machine to allocate task through the AvNA. The 

following equations were used:    

• Average processing time  

 PTAvg_host   PThost(i)                                                                           (1)  

• Percentage Load Balancing  

 %ALB =                   (2)  

 

Average Neighbourhood Algorithm  

 
Calculate Average PT of VMs  

Ave PT (VMs) = PThost(i)  

If  PT (VMj)  >  PThost (i)          //  VM is Overloaded  

// calculated degree of imbalance and redistribute workload {length}  

 TLVM(J) - TLhost(i)   

If  PT(VMj)  <   PT(i)    // VM is  Underloaded  

// Calculate Degree of imbalance  

TLhost(i)   -  TLMv(j) ///The degree of Imbalance factor   

 If   PT(VMj) = PT(i)   // VM = Balanced  

 
The AvNA presents detailed explanation of the system, when the load is overloaded, underloaded and 

balanced.  

The load is said to be overloaded when the processing time (PT) scheduled by the virtual machine is less 

than the processing time of the host system in the computing environment. When the processing time of the 

virtual machine is greater than the processing time of the host machine the server is underloaded. To calculate 



 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
5 

  

the degree of imbalance, the total amount of workload in the host system is subtracted from the virtual 

machine in the server. The load becomes underloaded when the processing time of the virtual machine is less 

than the processing time of host system. While, when the load is imbalance, the total length of the task 

submitted in host (i) is subtracted from the total length of the task in the virtual machine (vm).  

The balances the system workload on the server by calculating the average percentage of the workload in the 

server environment. It calculates the workload to be balanced by checking the neighbors load before 

redistribution of workload: if the server is overloaded or underloaded that means the incoming load is greater 

or lesser than the threshold value of trigger. This algorithm can only calculate and redistribute when the load 

is 10% greater than or less than the average workload within the cooperating computing nodes.    

5. Results and Evaluation  

The simulation result shows the distribution stage of the system, the initial volume of the system, the 

percentage at which the Average Neighbourhood Algorithm will be triggered to start the balancing and the 

actual balancing of the system. The system considered 4 and 8 server scenario and figure 3 and 4 show the 

output of the system.  

  
Figure 3: Output result for 4 servers after load balancing  

  

  
Figure 4: Output result for 8 servers after load balancing  

Table 1 Result table for 4 - servers  

No of servers  Sv1  Sv2  Sv3  Sv4  

Initial loads   1026  4676  1038  10386  

  1032  5283  1027  12879  

  1030  4179  1031  12244  

  1033  2644  1029  13590  

%ALB  1.23  1.03  1.23  1.26  

Actual LAB  1267  1481  3359  3979  



 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
6 

  

Table 2 Result table for 8 - servers  

No of 

server  

Sv1  Sv2  Sv3  Sv4  Sv5  Sv6  Sv7  Sv8  

Initial 

loads  

1030  4270  1032  2771  11154  5973  1029  1027  

  1038  3311  1031  2991  10568  4291  1035  1027  

  1031  3132  1029  2746  10116  4589  1029  1035  

  1028  2156  1038  3667  13159  4827  1034  1025  

%ALB  1.28  1.17  1.28  1.35  1.34  1.27  1.28  1.28  

Actual 

LAB  

2673  1134  3351  1745  3624  1638  3423  3417  

Graphical Representation  

The graph shows the time and the load representation of load balancing system.  

  
Figure 5: Degree of Load Balancing Response Time  

  

Figure 5 is the average response time varies among different simulation; from the graphical illustration, the 

time required for each load shows a clear separation from each other.  



 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
7 

  

  
Figure 6: Server against time elapsed  

Figure 6 shows number of servers against the time it takes to complete a load balancing process. It is clear 

that, the number of servers also affects the time the system takes to balance or redistribute workload among 

cooperating nodes in the system.   

6. Discussion of Results  

From the results observed, computing environment with systems numbering 4 and 8 servers where selected 

and the average neighborhood algorithm was executed during the system run. Figure 3 and figure 4 shows 

the output results for 4 and 8 servers after load balancing with sv1, sv2, sv3 and sv4 showing the initial 

distributed workload in figure 3 and LB1, LB2, LB3, LB4 showing the output of the balanced load.  

In figure 4, the server’s sv1, sv2, sv3, sv4, sv5, sv6, sv7, and sv8 show automatically generated initial loads 

for each node and the corresponding balanced load is shown in servers LB1 to LB8 respectively.  

From figure 3 and 4, the initial workload generated shows the unbalanced state of the servers. After applying 

the load balancing algorithm, the results showing on both figures presents an evenly distributed loads among 

the servers.  

Table 1 and Table 2 are the summary of the simulation results for 4 servers and 8 servers at different execution 

time. Figure 5 represents the load and time evaluation which gives the degree of load balancing response 

time.  

Figure 6 depicts the number of servers and time taken to complete the redistribution process.   

Conclusion  

Load balance access removes the overloaded workload and provides equal and approximate service in multi 

access / distributed computing environment. The load balancing method can be used for the better utilization 

and understanding of load balancing systems. This research observes that load balancing is important issue 

in a computing environment as it balances the storage and service demands in data center etc. It also helps 

in answering the question of how to achieve minimum overhead on the server system and maximum resource 

utilization, throughput, how to reduce traffic and get better performance of the system.  



 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
8 

  

References  

Boettcher, S., & Percus, A. G. (1999). Extremal optimization: Methods derived from coevolution. Paper 

presented at the Proceedings of the 1st Annual Conference on Genetic and Evolutionary 

Computation-Volume 1.  

Chana, Y. and N. J. Navimipour (2012). "Online knowledge sharing mechanisms: a systematic review of the 

state of the art literature and recommendations for future research." Information Systems Frontiers: 

1-21.  

Chaczko, A., et al. (2011). "Virtual machine provisioning through satellite communications in federated 

Cloud environments." Future Generation Computer Systems 28(1): 85-93.  

Charband, Y., & Navimipour, N. J. (2016). Online knowledge sharing mechanisms: a systematic review of 

the state of the art literature and recommendations for future research. Information Systems Frontiers, 

18(6), 1131-1151.  

Daraghmi, E. Y., & Yuan, S.-M. (2015). A small world based overlay network for improving dynamic load-

balancing. Journal of Systems and Software, 107, 187-203.   

Eero, D. C. (2000). "Cloud computing: A value creation model." Computer Standards & Interfaces 38: 72- 

77.  

GAO, R., & Wu, J. (2015). Dynamic load balancing strategy for cloud computing with ant colony 

optimization. Future Internet, 7(4), 465-483.   

Gopinath, P. G., & Vasudevan, S. K. (2015). An in-depth analysis and study of Load balancing techniques in 

the cloud computing environment. Procedia Computer Science, 50, 427432.   

Krishna, P. V. (2013). Honey bee behavior inspired load balancing of tasks in cloud computing environments. 

Applied Soft Computing, 13(5), 2292-2303.   

Kumar, S., & Dutta, K. (2016). Securing mobile ad hoc networks: Challenges and solutions. International 

Journal of Handheld Computing Research (IJHCR), 7(1), 26-76.   

Milani, A. S., & Navimipour, N. J. (2016). Load balancing mechanisms and techniques in the cloud 

environments: Systematic literature review and future trends. Journal of Network and Computer 

Applications, 71, 86-98.   

Ren, X., Lin, R., & Zou, H. (2011). A dynamic load balancing strategy for cloud computing platform based 

on exponential smoothing forecast. Paper presented at the 2011 IEEE International Conference on 

Cloud Computing and Intelligence Systems.  

Samanta, P., & Mondal, R. K. (2016). Load balancing through arranging task with completion time. 

International Journal of Grid and Distributed Computing, 9(5), 273-282.   



 Ayden Journal of Intelligent System and Computing, Volume 13 (1), 2025 / ISSN: 2997-187X 
  
 
Original Article  
 

 

  ©2025 AYDEN Journals 

 

 
9 

  

Wang, S.-C., Yan, K.-Q., Wang, S.-S., & Chen, C.-W. (2011). A three-phases scheduling in a hierarchical 

cloud computing network. Paper presented at the 2011 Third International Conference on 

Communications and Mobile Computing.  

Zhang, J., Huang, H., & Wang, X. (2016). Resource provision algorithms in cloud computing: A survey. 

Journal of Network and Computer Applications, 64, 23-42.   


