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Introduction   

Linear regression models are used to model the functional relationship between the response and the predictors 

linearly. This relationship is used for describing and estimating the response variable from predictor variables. 

Some important assumptions are needed to build a relationship, such as existing enough data, the validity of the 

linear assumption, the exactness of the relationship, and the existence of a crisp data for variables and coefficients.    

The fuzzy regression model is a practical alternative if the linear regression model does not fulfill the above 

assumptions. A fuzzy linear regression model first introduced by Tanaka et al. (1982). Their approach handled 

after that by many authors, such as Tanaka and Lee (1988); Tanaka and Watada (1988); Tanaka et al. (1989); 

Diamond (1988, 1990, 1992); Diamond and Koener (1997); D’Urso and Gastaldi (2000); Yang and Lin (2002); 

D’Urso (2003); Gonzalez-Rodriguez et al. (2009); Choi and Yoon (2010); Yoon and Choi (2009, 2013); D’Urso 

and Massari (2013).   

Fuzzy regression models have been treated from different points of view depending upon the type of input and 

output data. There are three different kinds of models:  
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• Crisp input and fuzzy output with fuzzy coefficients.  Fuzzy input and fuzzy output with crisp 

coefficients.  

• Fuzzy input and fuzzy output with fuzzy coefficients.  

The least squares method is used to estimate the fuzzy regression model. (See for instance, Diamond (1988, 1990, 

1992)).  

The objective of this paper is to extend the simple linear regression model to the multiple one and estimate it with 

the least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear 

regression model, and the resulting model is called the mixed fuzzy crisp (MFC).   

Our extended model will be evaluated using the extended squared distance of Diamond (1988). Generated data 

are applied to compare the estimation results of the proposed MFC model with the usual multiple fuzzy MF 

regression model. 

This paper will be outlined as follows. Section (2) presents some definition regarding fuzzy random variables 

(FRVs), fuzzy distance and possibility distributions will be introduced. In section (3) fuzzy linear regression 

models will be considered. The proposed mixed fuzzy and crisp (MFC) linear regression model will be introduced 

in section (4). Section (5) considers the numerical applications using generated and real data examples. The 

concluding remarks will be discussed in section (6).    

Mathematical Preliminaries  

Some definitions and notes will be presented in this section for the requirements of this work.   

2.1 Sets Representation of Fuzzy Numbers   

Let Kc R p   denotes the class of all non-empty compact intervals of Rp and let Fc R p  denotes the class of 

all fuzzy numbers of Rp   . Then, Fc R p  will be defined as follows:  

 Fc Rp A:Rp 0,1 | A Kc Rp 0,1 ,          (1)  

where A  is the α-cut set of A if 0,1 , and A0 is called the support of A. (Zadeh, 1975).    

For a given A, B Fc R , and b R , the followings hold:  

• The sum of A and B is called the Minkowski sum, defined as: S  A B Fc R . (Zadeh, 1975).  

• The scalar product of b and the set A is defined as: P b A Fc R  . (Zadeh, 1975).  

• A fuzzy number D Fc R  is called the Hukuhara difference of A and B defined as: D A H B , it is 

shown that the Hukuhara difference is the inverse operation of addition  , where A B D .(Zadeh,  

1975).   

2.2 Left and Right (L-R) Representation of Fuzzy Numbers  

Let A∈T(R) is a FRV, where T(R) is a set of trapezoidal fuzzy numbers of Fc(R). A trapezoidal fuzzy number A 

is defined as A=Tra(Al,Au,Av,Ar), where Al∈R and Ar∈R are the left and right limits of the trapezoidal fuzzy 

number A, respectively. Also Au∈R and Av∈R are the left and right middle points of A, respectively, as shown in 

Figure (1). When  

Au = Av =Am, a fuzzy number A will be a triangular, i.e., A=Tri(Al,Am,Ar), as shown in Figure (2)   

If Al=a, Au=b, Av=c,and Ar=d, a stylized representation of a trapezoidal fuzzy number A can be represented in 

the following L-R form:  

• A trapezoidal fuzzy number A is specified by a shape function with the following membership (Figure 

(1)):  
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Figure (1): Trapezoidal Fuzzy Number.  

• When c=b, a triangular fuzzy number A is specified by a shape function with the following membership 

(Figure  

(2)):  

    
 Figure (2): Triangular Fuzzy Number  

2.3 Metrics in Fuzzy Numbers Space   

To measure the distance between any two fuzzy numbers A, and B in Fc R , an extended version of the 

Euclidean (L2) distance (dE A,B ) is defined by: 

dE
2 A,B 0

1 AL BL
2d 0

1 AU BU
2d ,       (4) 

where AL  and AU  are the lower and upper -cuts of a fuzzy number A. (Grzegorzewski, 1998 ).  

Bertoluzza et al. (1995) have proposed the so-called Bertoluzza metric d(A,B), which is defined as:   

d 2 A,B  0,1 mid A mid B 2 d  0,1  spr A  spr B 2 d ,    (5)  

A U  A L   A U  A L 

where mid A  denotes the midpoint of A , and spr A  denotes the spread (or radius)  

2 2 of A , 0,1 . A U and A L denote the upper bound and lower bound of A, respectively.   

The Hausdroff dH A,B  metric for A, B Fc R  is given by:  

dH A,B  max inf A inf B ,   supA supB ,   (6)  

where infA is the infimum value of A, and supA is the supremum value of A.    

The d p A,B  metric for A, B Fc R  , and 1  p  is given by:  

1 

1 p 1 p  p dp A,B  inf A inf B  supA supB  ,        (7). 2 2  

where infA and supA are the infimum and supremum values of A, respectively. (See Vitale, 1985).   

The distance between fuzzy numbers can be defined as the distance between their membership functions. The 

distance d p A,B between the two fuzzy numbers A,B is given by:  

1 

d p A,B  A B p dm  p ,             for 1  p  ,       (8)  

X 

and  

d p A,B  essential sup A x B x          for p ,      (9)  

x X 
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where X  is a Lebesgue measurable set, m is a Lebesgue measure on X. (See Klir and Yuan, 1995).   

The membership functions of two fuzzy numbers are the same if the distance between them is zero, i.e.,   

d p A,B  0 A x  B x                  x X E ,      

If the two functions d1and d2 defined such that: d1 and d2 : X F X F R  ,  

where XF is a fuzzy set and X={x1,x2,…,xn} is a fuzzy random variable (FRV), and A,B X F .  

Then:  

n 

d1 A,B A xi B xi  ,            (10)  

i 1 

and  

n 

d2 A,B A xi B xi 
2 ,           (11)  

i 1 

Are called fuzzy distances. (Rudin, 1984).   

  

The FRVs used in this paper are considered as functions from a probability space (Ω,A,P) into the metric  

space (Fc(R),dθ), where θ>0. The sample mean X n and sample variance 2
,n of the FRV X are defined by:  

1 

X n  X1  X2 ...  X n ,        (12) n 

and  

2,n  1n i n 1   d 2 Xi , X n .          (13)  

 
If X and Y are two FRVs , then the Bertoluzza covariance between them is defined as:   

cov X,Y  covmid X,Y covspr X,Y ,                     (14)   

1 n 

covmid X,Y 0,1  n i 1   mid Xi mid Yi d 0,1  mid X n mid Yn d  

 (15)  

 
1 n 

covmid X,Y 0,1  n i 1   mid X i mid Yi d 0,1  mid X n mid Yn d   

(3) Fuzzy Linear Regression Models  

3.1 The Standard Linear Regression Models  

Consider the following standard simple linear regression model:  

 Yi 0 1X i i , i=1,2,…,n,          (16)  

 where 0 , and 1 are unknown parameters, X is the predictor, Y is the response variable and is the error term 

of the model, with E \ X  0 and finite variance. The least squares estimators of 0 , and 1are obtained by 

minimizing the sum of squared error criterion, Q, as follows:  

n 

 Q  argmin Yi 0 1 X1 
2 .          (17)  

0 , 1 i 1 

The resulting estimators denoted by b0 , and b1 are as follows:  

n 

xi yi nxy 
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b1    i 1
n ,    andb0  y b1x .      (18)   

 
xi2 nx2 

i 1 

The multiple linear regression model is one:  

Y X  ,            (19)   

where Y is an (n×1) column vector of the dependent variable, X is an (n×p) matrix of predictors, β is a (p×1) 

vector of unknown parameters to be estimated, and ε is an (n×1) vector of errors distributed as N(0,σ2In). The 

least squares estimator of β , denoted by b is given by:  

b  X X 1X Y ,            (20)  

which is obtained by minimizing the corresponding criterion, Q as:   

Q  argmin Y  X Y  X .          (21)  

  

3.2 Simple Fuzzy Linear Regression Models   

In the case of using fuzzy data, fuzzy regression models will be used to estimate the unknown parameters. 

Consider the following fuzzy simple linear regression models:  
  ~yi 0 1

~xi 
~   ,            (22)  

~yi ~0 ~1xi 
~ ,      (23) ~yi ~0 ~1

~xi 
~ ,       (24)  

  ~ ~   ~y is a fuzzy where 0 ,and 1 , are crisp parameters, x is a crisp variable, 0,and 1are 

fuzzy parameters,   

response variable, ~ x is a fuzzy predictor. As a lack of linearity of Fc R p , ~ is reduced to a non-FRV. (See 

Gonzalez-Rodriguez et al. (2009)).  

  

The regression functions of models (22), (23), and (24) will be approximated as follows:   ~ ~ ~ 

E(Y \ X) 0 1X ,                         (25)  

~ ~ ~ 

E(Y \ X) 0 1X ,               (26)     

~ ~ ~ ~ ~ 

E(Y \ X) 0 1X ,                            (27)    

    

The least squares estimators of the parameters in models (22):(24) are derived using using triangular and 

trapezoidal fuzzy numbers. The derivation is approximated by optimizing the least squares criterion. In this work, 

the least squares optimization criterion which is an extension version of that introduced by Diamond (1988) will 

be used.  

3.3 The least Squares Approach for of the Simple Fuzzy Regression Models Using Triangular Fuzzy 

Numbers  

The least squares estimators of the parameters in model (22) are obtained by minimizing the least squares criterion 

as follows:  

n 

Q 0 , 1  argmin d 2 ~yi , 0 1
~xi         (28)  

0 , 1 i 1 

Diamond (1988) showed that there are two cases arising when   0 or  0 .  Using the triangular  

1 1 

fuzzy number, the objective function in (28), when   0, will be as follows:  
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1 

n 

Q 0 , 1  argmin d 2 ~yi , 0 1~xi  

0 , 1 i 1 

 (29) n 

                  argmin yil 0 1xil 
2 yim 0 1xim 

2 yir 0 1xir 
2  

0 , 1 i 1 

  

By differentiating of Eq. (29) with respect to the parameters 1 and 0 , and equating the equations by zero:  

Q 0, 1  2xi1l n yil 0 1xi1l 2xi1m n yim 0 1xi1m 2xi1r n yir 0 

1x i1r  0  

 
1 i 1 i 1 i 1 

                  

Q 0, 1   2 n yil 0 1xi1l  2 n yim 0 1xi1m  2 n yir 0 1xi1r  

 0  

 
0 i 1 i 1 i 1 

                  

The least squares estimators, b1  and b0   of  1 and 0 respectively, are obtained as follows:  

 n 

xil yil  xim yim  xir yir 3nxy 

b1   i 1 n   ,           (30)  

 
xil2  xim2  xir2 3nx2 

i 1 

b0
  y b1 x ,                 (31)   

where, yil , yim , and yir  are the left, middle, and right value of yi , respectively, for i=1,2,…,n. Also, xil , xim , and  

n 

xir  are the left, middle, and right value of xi , respectively, for i=1,2,…,n. y  yil  yim  yir /3n , and  

i 1 n x  xil  xim  xir /3n.   

i 1 

For the second case, where  0, the objective function of (28) will be as follows:  

1 

n 

Q 0, 1  argmin d 2 ~yi, 0 1~xi  

0 , 1 i 1 

,  (32) n 

                  argmin yil 0 1xir 
2 yim 0 1xim 

2 yir 0 1xil 
2  

0 , 1 i 1 

  

and differentiating of Eq. (32), the least squares estimators, b1  and b0   of  1 and 0 respectively, are  

obtained as follows:  

n 
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xil yil  xim yim  xir yir 3nxy 

b1   i 1 n   ,           (33)  

 
xil2  xim2  xir2 3nx2 

i 1 

            b0
 y b1 x .                 (34)    

      

Diamond (1988 [5], 1990[6]) showed that for every fuzzy nondegenerate data set that b1
  b1  , and the least 

squares estimators will be unique if the fuzzy nondegenerate data set is tight.    

Definition (3.1)  

 Consider the fuzzy data sets ~ yi yil , yim, yir , and ~xi xil , xim , xir , for i=1,2,…,n, the set is said to be 

nondegenerated, if not all observations in a set are made at the same datum.   

Definition (3.2)  

 Consider the fuzzy data sets ~ yi yil , yim, yir , and ~xi xil , xim , xir , for i=1,2,…,n, the set is said to be 

tight if either b1   0 or b1   0 . If b1   0 the data set is said to be tight positive, and if b1   0 the data 

set is said to be tight negative. (Diamond (1988[5]).   

The least squares estimators of the parameters in model (23) are obtained by minimizing the squared distances 

between the regression model and the regression function as follows:    

Q ~0 , ~1  arg min n   d   2 ~yi , ~0 ~1xi         (35)  

0 , 1 i 1 

~ ~ 

where  0  0l , 0m, 0r  and 1  1l , 1m, 1r  are two triangular fuzzy numbers.  

Eq. (35) can be written as:  

  

Q 0, 1  argmin d 

~ ~  n   2 ~yi , ~0 ~1xi  argmin yil 0l 1l xi 2 yim 0m 1mxi 2 

yir 0r 1r xi 2     (36)  

0, 1 i 1 0, 1  

By differentiating of Eq. (36) with respect to the parameters  l ,  m ,  r and 0l , 0m , 0r , the least  

1 1 1 

squares estimators, b1l , b1m , b1r and b0l , b0m , b0r are obtained when xi ≥ 0 as 

follows: 

  

n n   n 

xi yil nxyl xi yim nxym   xi yir nxyr 

b1l  i 1n   , b1m  i 1 n , b1r    i 1n , xi
2 nx2 xi

2 nx2   

xi
2 nx2   i 1 i 1   i 1 

        (37)    

b0l  yl b1l x ,   b0l  yl b1l x  , .b0r  yr b1r x .             (38)    

 

 

 
 when xi < 0 , least squares estimators, b1l , b1m , b1r and b0l , b0m , b0r are obtained as follows:  
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 n 

xi yir  nxyr 

b1l  i 1n 

xi
2 nx2 

i 1 

n   n 

xi yim nxym   xi yil nxyl 

, b1m  i 1 n , b1r    i 1n ,  

xi
2 nx2   xi

2 nx2 

i 1   i 1 

        (37)    

       

 b0l  yl b1r x ,   b0m  ym b1m x  ,   b0r  yr b1l x .        (38)    

 

 

 
  

The least squares estimators of the parameters in model (24) are obtained by minimizing the squared  

distances between the regression model and the regression function as follows:   

~ ~  n   2 ~yi ,
~

0 
~

1
~xi      (39)  

Q 0 , 1  argmin d 

0 , 1 i 1 

, 

where  ~0  0l ,  m , ~   ~x i  xil , xim , xir  are triangular fuzzy numbers, and 0 0r  1  

1l , 1m , 1r  , and  

~0 ~1 ~x i is approximately fuzzy number. (See Arabpour and Tata).  

Eq. (39) can be written as:  

Q ~ , ~  argmin n d   2 ~yi, ~0 ~1xi  argmin yil 0l 1l xil 2 yim 0m 

1mxim 2 yir 0r 1r xir 2     (40)  

0 1 

0, 1 i 1 0, 1 

  

By differentiating of Eq. (40) with respect to the parameters 1l , 1m , 1r and 0l , 0m , 0r , the least  

~xi 's and ~ 1 are positive fuzzy squares estimators, b1l , b1m , b1r and b0l , b0m , b0r are obtained as follows when  

numbers.  

n n n 

xil yil nxl yl xil yim nxm ym xir yir  nxr yr 

b1l  i 1 n   , b1m  i 1 n , b1r  i 1 n ,          (41)  

 

 

xil2 nxl 2 xim2 nxm2 xir2 nxr 2 

i 1 i 1 i 1 

      

b0l  yl b1r x l ,   b0m  ym b1m xm  ,   b0r  yr b1l xr .       (42)   

The derivation of the fuzzy simple least squares estimators using trapezoidal fuzzy numbers can be easily found.    

  

3.4 Multivariate Fuzzy Linear Regression Models  

  



Ayden Journal of Intelligent System and Computing, Volume 10 (2), 2022 / ISSN: 2997-187X 
 
Original Article  
 

 

  ©2022 AYDEN Journals 

  
 

41   

3.4.1 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Crisp Parameters  

  

Consider the case of fuzzy simple linear regression models defined in (22), the multiple fuzzy regression  

model may be formalized as follows:  

 ~yi 0 1~xi1 2~xi2 ... p~xip ~ i .    (43)  

  

Suppose using centered values of fuzzy predictors, Eq. (43) can be written in matrix form as follows:  
  ~ ~   ~   ,         (44)  

Y  X   ~ ~ 

where, Y is an (n×1) vector , X is an (n×p) matrix of p fuzzy predictors, and  is a (p×1) vector of  

unknown p crisp parameters. As a result of the lack of linearity of Fc R p   , ~ is reduced to a non-FRV . 

(See  

Gonzalez-Rodriguez et al. (2009)).  

   

~ ~ 

 Y , X , , and  are formalized in matrix form as follows:  

~ y1   

 

Y~    ~y2  , X~ 

 

   

~yn   

 

~ 

~x11 ~x12 ~x1 p  1  ~1  

~x21 ~x22 ~x2 p   ,  2  , and  ~  ~2  ,   

        

~xn1 ~xn2 ~xn p    p  ~n  ~ 

where yi  yil , yim, yir , and xij 
 xijl ,xijm,xijr , for i=1,2,…,n, and j=1,2,…,p.   

The least squares estimator of β in model (44), for triangular fuzzy variables, can be formalized as follows:  

 ˆ  Xl Xl  Xm  Xm  Xr Xr 
1 Xl Yl  Xm Ym  Xr Yr ,        (45) 

where,  

  

Xl 
 xijl  x j  , Xm 

 xijm  xj  , X r 
 xijr  xj , are (n×p) left, middle, and right fuzzy matrices of  

predictors. Yl y1l , y2l ,..., ynl  , Ym y1m , y2m ,..., ynm  , Yr y1r , y2r ,..., ynr  , are (n×1) response vectors 

such that:  
 yil  xi1l 1  xi2l 2 ...  xipl p ,   for i=1,2,…,n yim  xi1m 1  xi2m 2 ...  x ipm p ,  for i=1,2,…,n  
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yir i1r 1  xi2r 2 ...  x ipr p ,   for i=1,2,…,n  

  

The least squares estimator of β in model (44), for trapezoidal fuzzy variables, can be formalized as follows:  

 ˆ  Xl Xl  Xu Xu  X X  Xr Xr 
1 Xl Yl  Xu Yu  X Y  Xr Yr ,  (46)   

where,  

Xl xijl x j  , Xu 
 xiju  xj  , X  xij xj , Xr 

 xijr  xj , are (n×p) left, middle left, middle right, 

 and  right  fuzzy  matrices  of  predictors. Yl y1l , y2l ,..., ynl  , Yu y1u , y2u ,..., ynu  

, Y  y1 , y2 ,..., yn ,   Yr y1r , y2r ,..., ynr , are (n×1) response vectors such that:  

 yil  xi1l 1  xi2l 2 ...  

xipl p ,   

for 

i=1,2,…,n  

yiu  xi1u 1  xi2u 2 ...  x 

ipu p ,  

for 

i=1,2,…,n  

yi   xi1 1  xi2 2 ...  x 

ip p   

for 

i=1,2,…,n  

yir  xi1r 1  xi2r 2 ...  x 

ipr p ,   

for 

i=1,2,…,n  

  

3.4.2 Multivariate Fuzzy Linear Regression Models for Crisp Predictors and Fuzzy Parameters  

Consider the case of fuzzy simple linear regression models defined in (23), the multiple fuzzy regression model 

can be generalized as follows:  

~yi ~0 ~1xi1 ~2xi2 ... ~ p x ip i .        (333)  

    

Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:  

~ ~ 

Y  X ,               (44)  

~ ~ 

where, Y is an (n×1) fuzzy vector , X is an (n×p) matrix of p crisp predictors, and  is a (p×1) vector of unknown 

p fuzzy parameters. As a result of the lack of linearity of Fc R p   , ~ is reduced to a non-FRV . (See Gonzalez- 

Rodriguez et al. (2009)).   

~ ~ 

 Y , X , , and  are formalized in matrix form as follows:  

~ y1   x11 x12 x1 p  ~1    1  

Y~    ~y2  , X  x21 x22 x2 p   , ~ ~2  , and   2  ,   

           

~yn   xn1 xn2 xn p    ~p  n  

 where ~yi  yil , yim, yir , and ~ j 
 

jl , jm , jr , for i=1,2,…,n, and j=1,2,…,p.   

The least squares estimator ˆ of ~ in model (44), for triangular fuzzy variables, can be formalized as follows: 

ˆ  ˆl , ˆm , ˆr ,  

where,  
ˆ
l  X X 1 X Y l ,      (45)  

ˆm  X X 1 X Y m , ˆr  X X 1 X Y r , where,  

X  ij  x   j  ,  and Yl y1l , y2l ,..., ynl  , Ym y1m , y2m ,..., ynm  , Yr y1r , y2r ,..., ynr , are (n×1)  
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response vectors such that:  yil  xi1 1l  xi2 2l ...  xip pl ,  for i=1,2,…,n yim  xi1 1m  xi2 2m ...  x ip pm 

,  for i=1,2,…,n yir  xi1 1r  xi2 2r ...  x ip pr ,  for i=1,2,…,n  

  ~ 

The least squares estimator of in model (44), for trapezoidal fuzzy variables, can be formalized as follows:  

ˆ  ˆl , ˆu , ˆv , ˆr ,  

where,  
ˆ
l  X X 1 X Yl ,             

ˆu  X X 1 X Yu ,  

ˆm  X X 1 X Yv   

ˆr  X X 1 X Yr .           

3.4.3 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Fuzzy Parameters   

Consider the case of fuzzy simple linear regression models defined in (24), the multiple fuzzy regression model 

can be generalized as follows:  

~yi ~0 ~1~xi1 ~2~xi2 ... ~p~x ip i .          

  

Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:  

~ ~~ 

Y  X ,         (44)  

~ ~ ~ 

where, Y is an (n×1) fuzzy vector , X is an (n×p) matrix of p fuzzy predictors, and  is a (p×1) vector of unknown 

p fuzzy parameters. As a result of the lack of linearity of Fc R p , ~ is reduced to a non-FRV . (See Gonzalez- 

Rodriguez et al. (2009)).    

~ ~ ~ 

 Y , X , , and  are formalized in matrix form as follows:  

~ 

y1   

~ ~y2  , 

X~  

Y  

   

 ~yn

  

~x11 

~x12 

~x21 

~x22 

 

 

~xn1 

~xn2 

 

 

 

 

~x1 p  ~1  

~x2 p   , ~ 

~2  , and   

   

~xn p    

~p  

~ 

1  

  

 

 2  ,   

 

 

  

n  

where ~ yi  yil , yim, yir , ~xij 
 xijl ,xijm,xijr  and j 

 
jl , jm , jr , for i=1,2,…,n, and j=1,2,…,p.   

The least squares estimator ˆ of ~ in model (44), for triangular fuzzy variables, can be formalized as follows:  

ˆ  ˆl , ˆm , ˆr ,  

where,  
ˆ
l  Xl Xl 

1 Xl Yl ,           (45)  

ˆm  Xm  Xm 1 Xm Ym ,  

ˆr  Xr Xr 1 Xr Yr ,  

where,  

Xl  ijl  x j  , Xm 
 xijm  xj  , X r 

 xijr  xj , are (n×p) left, middle, and right fuzzy matrices of  
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predictors. Yl y1l , y2l ,..., ynl  , Ym y1m , y2m ,..., ynm  , Yr y1r , y2r ,..., ynr  , are (n×1) response vectors 

such that:  

 yil  xi1l 1l  xi2l 2l ...  xipl pl ,  

   

for i=1,2,…,n  

yim  xi1m 1m  xi2m 2m ...  x 

ipm pm ,   

for i=1,2,…,n  

yir  xi1r 1r  xi2r 2r ...  x ipr pr 

,    

for i=1,2,…,n  

  ~ 

The least squares estimator of in model (44), for trapezoidal fuzzy variables, can be formalized as follows:  

       ˆ
l  Xl Xl 

1 Xl Yl ,         

      ˆ
u  Xu Xu 

1 Xu Yu , ˆv  X v X v 1 X v Yv   

      ˆ
r  X r X r 

1 X r Yr .   

(4) The Proposed Mixed Fuzzy Crisp (MFC) Regression Model    

All the fuzzy multiple regression models that have been considered in the literature handled the cases where all 

the predictors are fuzzy or all are crisp.  

In this section, a new multiple linear regression model which mixes the fuzzy and crisp predictors in one model 

called “Mixed Fuzzy Crisp” (MFC) regression model, is proposed.The least squares approach for the new model 

is derived based on positive tight data as defined in (3.2) and  triangular fuzzy numbers. Also, the properties of 

the resulting regression parameters are introduced in two cases: first, when the parameters are fuzzy, and second 

when the parameters are crisp.    

4.1 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Crisp Parameters  

Consider the case where the multiple linear regression model concludes some fuzzy and some crisp predictors. 

The computations will be done using triangular fuzzy number, and can applied to trapezoidal one. Assuming 

centered predictors, the proposed simplest form of multiple model that contain two predictors, one is crisp and 

the other is fuzzy, with crisp parameters will be as follows:  
~yi 1

~xi1 2 x i2 i .           (47)  
~where y 

i  yil , yim, yir , and ~xi1 xi1l , xi1m, xi1r , for i=1,2,…,n, xi2 xim, xim, xim  , and i is a non-

fuzzy  

error with mean equal zero. The regression function of model (47) will be as follows:  

   E(~y \ ~x1,x2) 1
~ x1 2x2.  

The derivation of the least squares estimators is done by minimizing the squared distances between the  

regression model and the regression function as follows:  

n n 

Q 1, 2  arg min d 2 ~yi , 1~xi1 2 xi2  arg min ~yi , 1~xi1 2 xi2 2 

0 , 1 i 1 0 , 1 i 1 

 (48)  

 arg min n ~yil 1xi1l 1xi2 2 n ~yim 1xi1m 2 xi2 2 n ~yir 1xi1r 

1xi2 2   

0 , 1  i 1 i 1 i 1  

By differentiating of Eq. (48) with respect to the parameters 1 , and 2 , the following equations are  

obtained: Q 0, 1  2xi1l n yil 1xi1l 2xi2 2xi1m n yim 1xi1m 2xi2  2xi1r 

n yir 1xi1r 2xi2  0       
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1 i 1 i 1 i 1 

n 

xi1l yil 1xi1l 2 xi2  xi1m yim 1xi1m 2 xi2  xi1r yir 1xi1r 2 xi2  0  

i 1 

  

n n n n n n n n n 

1 xi21l 2 xi1lx2 1 xi21m 2 xi1mx2 1 xi21r 2 xi1rx2 xi1lyil xi1myim 

xi1ryir  

i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 

  

n n n n n n n 

1 xi21l xi21m xi21r 2 xi1l x2 xi1mx2 xi1r x2 xi1l yil xi1myim xi1r 

yir , (49)  

i 1  i 1 i 1 i 1  i 1 i 1 i 1 

and,  

Q 0, 1   2xi2 n yil 1xi1l 2xi2  2xi2 n yim 1xi1m 2xi2  2xi2 n yir 

1xi1r 2xi2   0 

 
2 i 1 i 1 i 1   

n n n 

xi2 yil 1xi1l 2xi2 xi2 yim 1xi1m 2xi2 xi2 yir 1xi1r 2xi2  0 

i 1 i 1 i 1  n n n n n n n 

1 xi1lxi2 1 xi1mxi2 1 xi1rxi2 3 2 xi22 xi2 yil xi2 yim xi2 yir 

i 1 i 1 i 1 i 1 i 1 i 1 i 1 .  (50)  

Solving the equations (49) and (50), the least squares estimators, ˆ , and ˆ ,  of   , and  are obtained  

1 2 1 2 respectively, as follows:  

  

n n 

xi1l yil  xi1m yim  xi1r yir 3x1y xi2  

ˆ1  i 1 n n   i 1 ,       (51)  

 
xil2  xim2  xir2 3x12 xi2  

i 1 i 1 n n 

xi1l yil  xi1m yim  xi1r yir ˆ1 xil2  xim2  xir2  

ˆ2  i 1 n   i 1 ,     (52) x1 xi2  

 
i 1 

  

where, yil , yim , and yir  are the left, middle, and right value of yi , respectively, for i=1,2,…,n. Also, xi1l , xi1m , and 

xi1r  are the left, middle, and right i’s value of ~ x1 , respectively, for i=1,2,…,n.  

n n n n 

y yil xi2  yim xi2  yir xi2 
/ xi2 , and  x1 xil  xim  xir 

/ xi2 are the weighted means of ~y and  



Magda M. M. Haggag                                                                                                                                                  46  
  
  

 

  ©2022 AYDEN Journals 

  
 

46   

i 1 i 1 i 1 i 1 

~x 1 , respectively, using the observations of the crisp predictor x2 as weights. All the above results can be shown 

for trapezoidal fuzzy data.   

4.2 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Fuzzy Parameters   

Suppose in model (47) that both the parameters β1 and β2 are triangular fuzzy numbers, the MFC model will be 

defined as follows:  

  ~yi ~1
~xi1 ~ 2x i2 i .           (53)  

where ~1  1l ,   ~   ~yi  yil , yim, yir  , and ~xi1 xi1l , xi1m, xi1r  , for i=1,2,…,n, 1m , 1r , 

2  2l , 2m , 2r  ,  

xi2 xim, xim, xim , and i is a non-fuzzy error with mean equal zero. The regression function of model (52) 

will be  

as follows:  
 E(~y \ ~x1,x2) ~1

~x1 ~2x 2 .  

The derivation of the least squares estimators is done by minimizing the squared distances between the regression 

model and the regression function as follows:  

n ~ ~x ~ n 

Q 1, 2  arg~ min~ d 2 ~yi , 1   i1 2 xi2  arg~ min~ ~yi , ~1~xi1 ~2 xi2 

2 

1, 2 i 1 1, 2 i 1 

 (54)    

 arg~ min~   n ~yil 1l xi1l 2l xi2 2 n ~yim 1m xi1m 2m xi2 2 n ~yir 

1r xi1r 2r xi2 2   

1, 2  i 1 i 1 i 1  

    

By differentiating of Eq. (54) with respect to the parameters 1l , 1m , 1r , and 2l , 2m , 2r , then  

equating the resulting outputs to zero, the least squares estimators, ˆ
1l ,

ˆ
1m , ˆ

1r and ˆ
2 l ,

ˆ
2 m , ˆ

2 r are obtained 

as follows:   

n n n n n n 

xi1l yil  x1l yl xi2  xi1m yim x1m ym xi2  xi1r yir  x1r yr xi2  

ˆ1l  i 1 n n   i 1 , ˆ1m  i 1 n n i 1 , ˆ1r  i 1 n n i 1 ,   (55)    

 

 

 
xi21l  x12l xi2  xi21m x12m xi2  xi21r  x12r xi2  

i 1 i 1 i 1 i 1 i 1 i 1 

    

n n n n n n 

xi1l yil ˆ1l xi21l  xi1m yim ˆ1m xi21m  xi1r yir ˆ1r 

xi21r  

ˆ2l  i 1 n   i 1 ,    ˆ2m  i 1 n i 1 ,  ˆ2l  i 1 n i 1 ,   (56) x1l 

xi2  x1m xi2  x1r xi2  
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i 1 i 1 i 1 

  

where, yil , yim , and yir  are the left, middle, and right value of yi , respectively, for i=1,2,…,n. Also, xi1l , xi1m ,  

~ x1 , respectively, for i=1,2,…,n.  and xi1r  are the left, middle, and right i’s value of  

n n 

Using  the  observations  of  the  crisp  predictor x2  as  weight, yl yil xi2 / xi2

 ,  

i 1 i 1 

n n n n 

ym 
 yim xi2 

/ xi2 
, yr 

 yir xi2 
/ xi2 are the weighted means of yl , ym , 

and yr respectively. Also,  

i 1 i 1 i 1 i 1 

n n n n n n 

x1l xi1l / xi2 , x1m xi1m / xi2 , x1r xi1r / xi2 are the weighted means of x1l , x1m , 

and  

i 1 i 1 i 1 i 1 i 1 i 1 x 1r , respectively. All the above results can be shown for trapezoidal 

fuzzy data.  

(5) A Simulation Study  

To illustrate the effectiveness of the proposed MFC regression model, a simulation study is conducted to compare 

the performance of MFC regression model with MF regression one. Two groups of models are introduced with 

two predictors, in the first group MFC and MF models with crisp parameters are used, and in the second group 

MFC and MF models with fuzzy parameters are considered as follows:   

5.1 First Group  

Model (1) MFC   regression model: ~ yi 1~xi1 2 xi2 i ,   for i=1,2,…,n with the following left, 

center, and right models: 

yil xi1l 1 xi2 2 ,  

   

for i=1,2,…,n  

yim xi1m 1 xi2 2 ,    for i=1,2,…,n  

yir xi1r 1 xi2 2 ,    for i=1,2,…,n  

Model (2) MF   regression model:   ~ yi 1~xi1 2~xi2 i , with the following left, center, and 

right sub-models:  

yil xi1l 1 xi2l 2 ,   for i=1,2,…,n yim xi1m 1 xi2m 2 ,  for i=1,2,…,n yir xi1r 1 xi2r 2 ,   for i=1,2,…,n  

 The triangular data set of ~ xi1  (xi1l , xi1m , xi1r ) and ~xi2  (xi2l , xi2m , xi2r ) are generated from the normal 

distribution, and repeated 100 times, as follows:   

x 1l ⁓N(0.5,2), x 1m ⁓N(1,2), x 1r ⁓N(2,4).  

  

The error term is supposed to distribute as normal with mean zero and variance one, i.e., ⁓N(0,1), 1 =0.5 and 

2 =1.5.  

~ 2 

The criterion used to compare the model (1) and model (2) is R , which is defined as:  

  R ~2 1  dd 22    ~~yy,, yy
ˆ   ,         (57)  
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where, d 2 ~y, yˆ is the squared distance between ~y  yl , yc , yr  and yˆ  yˆl , yˆc , yˆr . Also, d 2 

~y, y  is the squared distance between ~ y  yl , yc , yr  and y yl , yc , yr .   

  ~ 2 

In Table (1), the multiple fuzzy model (MF) and mixed fuzzy crisp model (MFC) are compared using R  

~ 

criterion as defined in (57). Best results are obtained for the MFC model in the form of greater values of the left 

R2   

R~2 
 is noted for small sample sizes (n=5). compared to the left MF for all sample sizes. The improve of the right 

~ 2 

Generally, the higher values of R are obtained for smaller sample sizes of the two models MF and MFC. These 

results prove the validity of the fuzzy regression for vague and small data.    

  ~ 2 

Table (1): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp 

(MFC) regression model with different sample sizes, n=5,10,20,50,100,200, 1=0.5 and 2 =1.5.   

n=5  Model   Left  Center  Right  n=50  Model   Left  Center  Right  

  MF  0.9349  0.9496  0.9581    MF  0.9079  0.9415  0.9826  

  MFC  0.9703  0.9496  0.9895    MFC  0.9567  0.9415  0.9342  

                    

n=10  Model   Left  Center  Right  n=100  Model   Left  Center  Right  

  MF  0.9634  0.9936  0.9927    MF  0.7296  0.9074  0.9733  

  MFC  0.9899  0.9936  0.9896    MFC  0.9068  0.9074  0.9363  

                    

n=20  Model   Left  Center  Right  n=200  Model   Left  Center  Right  

  MF  0.8489  0.9463  0.9771    MF  0.8052  0.9201  0.9788  

  MFC  0.9548  0.9463  0.9497    MFC  0.9236  0.9201  0.9409  

  

5.2 Second Group  

Model (1) MFC regression model: ~yi ~ 1~xi1 ~ 2xi2 i ,   for i=1,2,…,n with the following left, center, 

and right models:  

yil xi1l 1l x i2 2l ,    for 

i=1,2,…,n  

yim xi1m 1m x i2 2m 

,   

for 

i=1,2,…,n  

yir xi1r 1r x i2 2r ,    for 

i=1,2,…,n  

Model (2) MF regression model:     ~yi ~ 1~xi1 ~2~xi2 i with the following left, center, and right 

models:  

  

yil  xi1l 1l  x i2l 2l ,   for i=1,2,…,n yim xi1m 1m x i2m 2m ,  for i=1,2,…,n yir xi1r 1r x i2r 2r ,  for i=1,2,…,n  
 The triangular data set of  ~ xi1  (xi1l , xi1m , xi1r ) and ~xi2  (xi2l , xi2m , xi2r ) are generated from the normal 

distribution, and repeated 100 times, as follows:  
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x 1l ⁓N(0.5,2), x 1m ⁓N(1,2), x 1r ⁓N(2,4).  

The error term is supposed to distribute as normal with mean zero and variance one, i.e., ⁓N(0,1), ~ 0.5,1.0,1.5  

and ~ 2  0.5,1.0,1.5 . The criterion R~2   is used to compare the MFC and MF regression models.    

1   

In Table (2), as in the first group, it is found that best results are obtained for the MFC model in the form of 

greater values of the left R~ 2  compared to the left MF for all sample sizes. The improve of the right R~2 is noted 

for  

~ 2 small sample sizes (n=5). Generally, the higher values of R are obtained for smaller sample sizes for the two 

models MF and MFC. These results prove the validity of the fuzzy regression for small data.  

  ~ 2 

Table (2): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp  

~ 

(MFC) regression model with different sample sizes, n=5,10,20,50,100,200, 1  0.5,1.0,1.5  and ~ 

2 0.5,1.0,1.5 .   

  

  

  

  

  

  

  

n=5  Model   Left  Center  Right  n=50  Model   Left  Center  Right  

  MF  0.7343  0.8700  0.9942    MF  0.8233  0.9218  0.9868  

  MFC  0.8366  0.8700  0.9979    MFC  0.8757  0.9218  0.9742  

                    

n=10  Model   Left  Center  Right  n=100  Model   Left  Center  Right  

  MF  0.9006  0.9893  0.9947    MF  0.3830  0.8864  0.9842  

  MFC  0.9421  0.9893  0.9936    MFC  0.5826  0.8864  0.9815  

                    

n=20  Model   Left  Center  Right  n=200  Model   Left  Center  Right  

  MF  0.6505  0.9533  0.9910    MF  0.6378  0.9083  0.9884  

  MFC  0.8399  0.9533  0.9887    MFC  0.7392  0.9083  0.9834  

  

(6) Conclusions   

In this paper the simple linear regression model is extended to the multiple one and estimated with the least 

squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear regression model, 

and the resulting model is called the mixed fuzzy crisp (MFC). Our extended model is evaluated using the 

extended R~2   . Simulated data examples are applied to compare the results of MFC model with the multiple 

fuzzy (MF) fuzzy  

~ 2 regression model using triangular fuzzy numbers. Best results are obtained in the form of larger values of R 

of MFC compared to MF especially for small sample sizes. These results support using MFC model for small 

data size and for large size of tight data.   
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