Ayden Journal of Intelligent System and Computing, Volume 10 (2), 2022 / ISSN: 2997-187X

Original Article

CREATING ENHANCED REGRESSION MODELS: STRATEGIES FOR
BLENDING FUZZY AND CRISP INPUTS

Tarek Mahmoud El-Sayed and Hala Samir Fawzy

Associate Professor of Statistics, Head of the
Department of Statistics, Mathematics, and
Insurance, Faculty of Commerce, Damanhour
University, Egypt

Introduction

Linear regression models are used to model the functional relationship between the response and the predictors
linearly. This relationship is used for describing and estimating the response variable from predictor variables.
Some important assumptions are needed to build a relationship, such as existing enough data, the validity of the
linear assumption, the exactness of the relationship, and the existence of a crisp data for variables and coefficients.
The fuzzy regression model is a practical alternative if the linear regression model does not fulfill the above
assumptions. A fuzzy linear regression model first introduced by Tanaka et al. (1982). Their approach handled
after that by many authors, such as Tanaka and Lee (1988); Tanaka and Watada (1988); Tanaka et al. (1989);
Diamond (1988, 1990, 1992); Diamond and Koener (1997); D’Urso and Gastaldi (2000); Yang and Lin (2002);
D’Urso (2003); Gonzalez-Rodriguez et al. (2009); Choi and Yoon (2010); Yoon and Choi (2009, 2013); D’Urso
and Massari (2013).

Fuzzy regression models have been treated from different points of view depending upon the type of input and
output data. There are three different kinds of models:
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. Crisp input and fuzzy output with fuzzy coefficients. [1 Fuzzy input and fuzzy output with crisp
coefficients.

. Fuzzy input and fuzzy output with fuzzy coefficients.

The least squares method is used to estimate the fuzzy regression model. (See for instance, Diamond (1988, 1990,
1992)).

The objective of this paper is to extend the simple linear regression model to the multiple one and estimate it with
the least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear
regression model, and the resulting model is called the mixed fuzzy crisp (MFC).

Our extended model will be evaluated using the extended squared distance of Diamond (1988). Generated data
are applied to compare the estimation results of the proposed MFC model with the usual multiple fuzzy MF
regression model.

This paper will be outlined as follows. Section (2) presents some definition regarding fuzzy random variables
(FRVs), fuzzy distance and possibility distributions will be introduced. In section (3) fuzzy linear regression
models will be considered. The proposed mixed fuzzy and crisp (MFC) linear regression model will be introduced
in section (4). Section (5) considers the numerical applications using generated and real data examples. The
concluding remarks will be discussed in section (6).

Mathematical Preliminaries

Some definitions and notes will be presented in this section for the requirements of this work.

2.1 Sets Representation of Fuzzy Numbers

Let Kc JR P [Idenotes the class of all non-empty compact intervals of RPand let F¢ (IR P [J denotes the class of
all fuzzy numbers of RP . Then, Fc (IR P [J will be defined as follows:

Fe ORP OO OARP DO0,10] A DK DRP D ODOH0,100, (1)

where Ar is the a-cut set of A if [J[1110,10], and Ao s called the support of A. (Zadeh, 1975).

For a given A, BJFc [JR[J, and b[IR , the followings hold:

. The sum of A and B is called the Minkowski sum, defined as: S [1 ALIBLIFc [IR[J. (Zadeh, 1975).

. The scalar product of b and the set A is defined as: PLbJALF: R . (Zadeh, 1975).

. A fuzzy number DIJF: [JR(1 is called the Hukuhara difference of A and B defined as: DLJAUDWB | it is
shown that the Hukuhara difference is the inverse operation of addition [1 , where A[IB[1D .(Zadeh,

1975).

2.2 Left and Right (L-R) Representation of Fuzzy Numbers

Let AET(R) is a FRV, where T(R) is a set of trapezoidal fuzzy numbers of F¢(R). A trapezoidal fuzzy number A
is defined as A=Tra(Ai,Au,Av,Ar), Where Ai€ER and Ar€R are the left and right limits of the trapezoidal fuzzy
number A, respectively. Also AyeR and Av€eR are the left and right middle points of A, respectively, as shown in
Figure (1). When

A, = Ay =An, a fuzzy number A will be a triangular, i.e., A=Tri(Ai,Am,Ar), as shown in Figure (2)

If Ai=a, Ay=b, Av=c,and Ar=d, a stylized representation of a trapezoidal fuzzy number A can be represented in
the following L-R form:

. A trapezoidal fuzzy number A is specified by a shape function with the following membership (Figure

L))
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Figure (1): Trapezoidal Fuzzy Number.
. When c=b, a triangular fuzzy number A is specified by a shape function with the following membership
(Figure
(2)):
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Figure (2): Triangular Fuzzy Number

2.3 Metrics in Fuzzy Numbers Space

To measure the distance between any two fuzzy numbers A, and B in F¢ [JR[], an extended version of the
Euclidean (L) distance (de [1A,B[1) is defined by:

de?0ABOO Dt DALD DO OBLO DO D2d 00 Dot DAUD OO OBy 0002, (4)

where AL (1110 and Ay (101 are the lower and upper [J-cuts of a fuzzy number A. (Grzegorzewski, 1998 ).
Bertoluzza et al. (1995) have proposed the so-called Bertoluzza metric d(A,B), which is defined as:
d20A,BO0 40,1 Omid A D Omid B0 02d 00 10,1+ OspriA- 00 spriiB-002d0, (5)
AUOAL AUDALL

where mid[JA~[1[] denotes the midpoint of A-, and spriJAr ][] denotes the spread (or radius)

2 20f A, 00-00,100. A Yand A " denote the upper bound and lower bound of A, respectively.

The Hausdroff dH [JA,B[J metric for A, B[JFc [JR[] is given by:

du OA,BO 0 maxUihf ADInf B | [supALsupB [,

where infA is the infimum value of A, and | SUpA is the supremum value of A.

The d p JA,BL metric for A, BOOFc ORI, and 100 pO00 is given by:

1

1 p 1 plp dpEA,ErE Ou ianDilhf B [J supALlsupB -, (7). 022 0

where infA and stA are the infimum and supremum values of A, respectively. (See Vitale, 1985).

The distance between fuzzy numbers can be defined as the distance between their membership functions. The
distance d p [JA,B[Ibetween the two fuzzy numbers A,B is given by:

1 /

dp JABOL DDDADDB&)dep, for 100 pi0J, (8)
X

and

dp OABOI essential SUpDAD)LDDDB Ox0 | for pOi(7, 9
XX

©2022 AYDEN Journals



Ayden Journal of Intelligent System and Computing, Volume 10 (2), 2022 / ISSN: 2997-187X

Original Article

where X117 is a Lebesgue measurable set, m is a Lebesgue measure on X. (See Klir and Yuan, 1995).
The membership functions of two fuzzy numbers are the same if the distance between them is zero, i.e.,
dpOABOO 00OAOXOD O XL OxOOX DEO,

If the two functions diand d defined such that: diand d2: X e OX g ORY,

where Xk is a fuzzy set and X={x1,Xz,...,xn} Is a fuzzy random variable (FRV), and A,BLI1X r.

Then:
n

| &0ABOOAOA DX 0008 Oxi 0 | (10)
i1
and
n
d2 DABOO DDA DX D0 0g Oxi 02, (11)
i1

Avre called fuzzy distances. (Rudin, 1984).

The FRVs used in this paper are considered as functions from a probability space (Q,A,P) into the metric

space (F¢(R),do), where 6>0. The sample mean X , and sample variance [J 2, of the FRV X are defined by:
1 —

Xn 0 OX1 0 Xe 0.0 X0, (12) n

and _

002,00 1Indio"l d 20X, X 0. (13)

If X and Y are two FRVs , then the Bertoluzza covariance between them is defined as:

covA X, Y T €oVimig (X, Y 0 0 covepr X, Y [, (14)

1n _ _

COVmid DX,YDDDTO,laniD]. midO0OXi OnOmid00Yi Op0dO000-0,1-mid00OX n O-Omid 0 0Ya O -0d0
(15)

1n

COVmig X, YOO Ir0,105 101 midOOXi O-0middOYi Or0dO00-0,1-mid OX n O-Omidd0Ys O OdO
(3) Fuzzy Linear Regression Models

3.1 The Standard Linear Regression Models

Consider the following standard simple linear regression model:

Yilllo DX L0, 1=1,2,...,n, (16)

where [o, and(11 are unknown parameters, X is the predictor, Y is the response variable and [Jis the error term
of the model, with ECJC\ X[ 0 and finite variance. The least squares estimators of [1o, and[J;are obtained by
minimizing the sum of squared error criterion, Q, as follows:

n

Q D arg™" Y 0o Oy Xg 02, (17)

Uo,H1 101

The resulting estimators denoted by bo, and by are as follows:

n

UOXiYi L nxy
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by O, , andbo [ y[bix-. (18)

(Ixi2 [nx2

il

The multiple linear regression model is one:

Y OXO0o0, (19)

where Y is an (nx1) column vector of the dependent variable, X is an (nxp) matrix of predictors, p is a (px1)
vector of unknown parameters to be estimated, and € is an (nx1) vector of errors distributed as N(0,6°In). The
least squares estimator of (3 , denoted by b is given by:

b 0 OXOXOXOY, (20)
which is obtained by minimizing the corresponding criterion, Q as:

Q JargmindY 0 XO--0Y 0O X000, (21)
[

3.2 Simple Fuzzy Linear Regression Models
In the case of using fuzzy data, fuzzy regression models will be used to estimate the unknown parameters.
Consider the following fuzzy simple linear regression models:

ViOOo DO xi DO, (22)
VilO~o OO0~ 007, (23) yiOO~oOO~"xi 007,  (24)

~ ~ ~y is a fuzzy where [10 ,and[]1 , are crisp parameters, X is a crisp variable, [10,and[]1are
fuzzy parameters,
response variable, ~ x is a fuzzy predictor. As a lack of linearity of Fc DR P (1, '~ is reduced to a non-FRV. (See
Gonzalez-Rodriguez et al. (2009)).

The regression functions of models (22), (23), and (24) will be approximated as follows: ~ ~ ~

ECY \X) O 001X, (25)
ECY\X) 00 001X, (26)
ECY\X) 00 001X, (27)

The least squares estimators of the parameters in models (22):(24) are derived using using triangular and
trapezoidal fuzzy numbers. The derivation is approximated by optimizing the least squares criterion. In this work,
the least squares optimization criterion which is an extension version of that introduced by Diamond (1988) will
be used.

3.3 The least Squares Approach for of the Simple Fuzzy Regression Models Using Triangular Fuzzy
Numbers

The least squares estimators of the parameters in model (22) are obtained by minimizing the least squares criterion
as follows:

n -

QU o, 00 arg™ 0d 27y, o D 017Xi O (28)

Uo,H1 101

Diamond (1988) showed that there are two cases arising when [J [J 0 or [J [1J0 . Using the triangular

1 1

fuzzy number, the objective function in (28), when [J [1 0, will be as follows:

©2022 AYDEN Journals
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1
n
QUI00,01 O argmin (Id 2 [~yi ,[10 CJ1~xi [
o,071 101
(29) n
0 arg™ -0 Oy O Do O Oaxit 02 0 0Yim 0 o 0 OaXim 02 0 Oyir O Do O Oaxie 02 0
Oo,01 101

By differentiating of Eq. (29) with respect to the parameters '1and [Jo, and equating the equations by zero:
0QUIIUO,01000 2xill Cin Oyil 000 D OAxidl OO2xidm On Dyim D000 O O1xilm OO02xilr On Oyir 000
O0Axilr 0000

001 101 01 a0l

OQUIIO,010 U 200n Dyil OO0 D OAxidl 00 20n Oyim 00 O0Ixidm D0 20n Oyir D00 O 0Axidr [
00

000 o1 o1l il

The least squares estimators, b1~ and bo~ of “1and [Jo respectively, are obtained as follows:
n

Ooxil yil O xim yim O xir yir C103nxy

bl il n : (30)

O0xil2 [0 xim2 [ xir2 C013n%2
ifl
bo'!' [ y-[1b1 '%, (31)
where, Vi, Yim, and yir are the left, middle, and right value of y; , respectively, for i=1,2,...,n. Also, Xii, Xim, and
n
Xir are the left, middle, and right value of xi , respectively, for i=1,2,...,n. ¥-[J T yi O Yim O yir (/30 , and
101 nx0 O O0xi O Xim O Xir /30,
ifl
For the second case, where [ [11]0, the objective function of (28) will be as follows:
1
n
QU IM00,0100 argmin [1d 200~yi,[10 D O1~xi [
Uo,H1 1001
, (32)n
0 arg™" - 00y D Do O DaxXir 02 0 OYim O Do D DaxXim 02 O Oyir O 0o O 01X 02 0
Co, 1 1001

and differentiating of Eq. (32), the least squares estimators, b1 and bo~ of ~1and (o respectively, are
obtained as follows:
n
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O Oxilyil O xim yim O xir yir 0 03nxy
b1O OOl n , (33)

O0xil2 [ xim2 [ xir2 03nx2
il
bo- [y[1h1 % (34)

Diamond (1988 [5], 1990[6]) showed that for every fuzzy nondegenerate data set that b1~ [J b:- , and the least
squares estimators will be unique if the fuzzy nondegenerate data set is tight.

Definition (3.1)

Consider the fuzzy data sets ~ yi C1C1Yir, Yim, Yir [, and “Xi [ 0Xir, Xim, Xir [1, for i=1,2,...,n, the set is said to be
nondegenerated, if not all observations in a set are made at the same datum.

Definition (3.2)

Consider the fuzzy data sets ~ yi CICIYir, Yim, Yir [, and “Xi O OXir, Xim , Xir L1, for i=1,2,...,n, the set is said to be
tight if either b10J (1 0 or b1(1 [J 0. If b1[1 [J O the data set is said to be tight positive, and if b1 [1 O the data
set is said to be tight negative. (Diamond (1988]5]).

The least squares estimators of the parameters in model (23) are obtained by minimizing the squared distances
between the regression model and the regression function as follows:
QUO~o,0~1 000 argmin [In d 2 O~yi,[0~0 O0O~1xi [J (35)

(o, 1 1001
where o [0 U Uor, Com, Dor U and Oy O 0 Oy, Ham, Har O are two triangular fuzzy numbers.

Eqg. (35) can be written as:

QUO0,001 [J argmin(id

o~ ~g " 2 U~yi,[0~0 O0~1xi 00 argminC Oyil 0001 0011 xi 02 O0yim 000m O O01mxi 02
O Oyir 000r O01rxi 02 0 (36)

00,01i01 00,01

By differentiating of Eq. (36) with respect to the parameters 'I,"'m, " rand Cor, Oom, Uor, the least
1 1 1

squares estimators, b1l , b1m, blrand b0l , bOm, bOr are obtained when xi > 0 as

follows:

n n n

O OXi il 0Ny U OXi Yim U U NXYm U OXi Yir U TNy

bll 0 i0ln , blm O i01ln, blr O i0ln, OOx200 OOx200m  (37)

O Oxi2 0 L 01 iol ol

b0l [ yl (b1l -, bOl (1 yl b1l % ,.bOr O yr Oblr x-. (38)

when xi <0, least squares estimators, b1l , blm, blr and b0l , bOm , bOr are obtained as follows:
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n n n
L EIX Yir 0T noédr U OXi Yim U NXYm U UXi il D nxy
b1l O ilJ1n ,blm 0 idJ1ln,blr Oidln, (37)
O OXi20 Onx? OOx200n DOx20 0N
01 0l il
bOI O yl Ublr », bOm [J ym [Oblm x bOr [J yr Ubll % (38)

The least squares estimators of the parameters in model (24) are obtained by minimizing the squared
distances between the regression model and the regression function as follows:

0~ =~ " 207y, 070 0017 [ (39)

Q Lo, 1 [J argmin [d

Oo,01 101

where [~ [J [0, m = "X i O OXil, Xim, Xir [J are triangular fuzzy numbers, and o Cor [ "1 [J

U0, Him,Uar U, and

[1~0 [J00~1 -x i is approximately fuzzy number. (See Arabpour and Tata).

Eq. (39) can be written as:

QUO~ ,0~00 argmintn d  20~yi,[J~0 OO~1xi OO argminCOyil OO0 001 xil 02 O0yim 000m
O0Imxim 02 OOyir OO0r OO xir 02 O (40)

0 1

10,01i01 00,01

By differentiating of Eq. (40) with respect to the parameters 11 ,“1m, “1r and Cor, Com, Clor, the least
~Xi's and []~ 1 are positive fuzzy squares estimators, bai, bim, birand bor, bom , bor are obtained as follows when
numbers.

n n n
Ooxil yil O0Onxlyl O Oxil yim O O0nxkm ym CIOIXir yir OO nxr yr
bl Di0ln ,bIm(Jil01ln ,blr0ifiln (41)

OOxil200nx! 2 O0Oxim2 O0nxm2 O 0Oxir2 O0Onxr 2
i0ol1 i01  inl

bOl [ yl C1blr %, bOm [J ym [CJblm xm , bOr [J yr (b1l xr . (42)
The derivation of the fuzzy simple least squares estimators using trapezoidal fuzzy numbers can be easily found.

3.4 Multivariate Fuzzy Linear Regression Models
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3.4.1 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Crisp Parameters

Consider the case of fuzzy simple linear regression models defined in (22), the multiple fuzzy regression
model may be formalized as follows:
~Yi 0o 0 O1~Xix O H2~Xi2 U...00 Op~Xip DO~ (43)

Suppose using centered values of fuzzy predictors, Eq. (43) can be written in matrix form as follows:
~ ~ T, (44)
Y O XOOO -~ ~
where, Y is an (nx1) vector , X is an (nxp) matrix of p fuzzy predictors, and [J is a (px1) vector of
unknown p crisp parameters. As a result of the lack of linearity of Fc IR P [J, '~ is reduced to a non-FRV [J.
(See
Gonzalez-Rodriguez et al. (2009)).

~ ~

Y, X, O, and [Jare formalized in matrix form as follows:

~yill [ O

D ~

Y~ [ 0O0~y200 , X~ ~x11~x12 00~x100p0 0010 00~10

000 ~Xx21 ~x22 O 0~x20p0 0O, 00 000200, and O~ O O0O0~2000,
0000 0 O 0 0 000 O000 0Oooog

L~yn0 0oogd ~xnl ~xn2 C0~xnCpC 00 OO000pO00 O00~nO0 ~

where yi [ Clyir, Yim, Yir (1, and Xij — OXiji, Xijm,Xijr [, for i=1,2,...,n, and j=1,2,....p.

The least squares estimator of § in model (44), for triangular fuzzy variables, can be formalized as follows:
070 OXi0X1 0 Xm Xm O XeOXe O720O0X0Y1 0 XD Ym 0 X 0Y [, (45)

where,

Xi= Oxiji 0 %5 0, Xm™ OXijm 0 %5 0, X ¢~ Oxije O % 0, are (nxp) left, middle, and right fuzzy matrices of
predictors. Y1 DOy, Yar e Yot L, Ym O 0Yim, Yom ey Yom O, Y O OY1r, Yor,..., Yar [, are (nx1) response vectors
such that:

yir O Xin1 O X2 0.0 XiptUp,  for 1=1,2,...,n Yim [ Xizm[1 [ Xiom[J2 [...[0 X jpm[Jp, fori=1,2,...,n
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Yir itrlJ1 O Xizr[2 .00 Xjprldp,  fori=1,2,...,n

The least squares estimator of § in model (44), for trapezoidal fuzzy variables, can be formalized as follows:

D D DXIDXI D XuDXu D XTDXTD XrDXr DTlDXIDYI D XuDYu D XDDYTD XrDYr D, (46)

where,

Xi ' Oxij 0% 0, Xo & Oxiju O %5 0, X5 Oxijo 0% O, Xe ' Oxije O %5 0, are (nxp) left, middle left, middle right,
and right fuzzy matrices of predictors. Y1 OOy, Yai e Yor O, Yo O0Y1u, Y2u e Yiu U

, Yo OOy, Yoo, Yo, YeOOYar, Yor,..., Yar U, are (nx1) response vectors such that:

yil 0O xill01 O xi2l02 0...0for

xiplUp, i=1,2,...,n
yiu [0 xiluO1 O xi2ud2 0.0 xfor
ipullp, i=1,2,...,n
yill O xilOO1 0 xi2002 0.0 xfor
iplip i=1,2,...,n
yir 0 xilr0J1 [0 xi2r(02 (0.0 xfor
ipriip, i=1,2,...,n

3.4.2 Multivariate Fuzzy Linear Regression Models for Crisp Predictors and Fuzzy Parameters

Consider the case of fuzzy simple linear regression models defined in (23), the multiple fuzzy regression model
can be generalized as follows:

~Yi O 0~o 0 O~1Xi1 O O~2Xi2 ... 00~ pXip O (333)

Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:

Y 0 X000, (44)

where, Y is an (nx1) fuzzy vector , X is an (nxp) matrix of p crisp predictors, and [J is a (px1) vector of unknown
p fuzzy parameters. As a result of the lack of linearity of Fc (IR P [, “~ is reduced to a non-FRV [J. (See Gonzalez-
Rodriguez et al. (2009)).

Y, X, ,and Uare formalized in matrix form as follows:

O~yl0 [ x11 x12 OOx10pt 00O~1 0 0010

Y~ 0O O0~y200, X 000 x21 x22 O0x20p00 , O~ 0000~2 00 ,and OO0 000200,
0goo [ [ [ [ ooo - 000 0 ooo

U~ynlU 0 000 xnlxn2 CO0OxnCpO o0 gubb~-p gt Uubnt

1 where ~y; O Oil, Yim, Yir (1, and O~ 001, 0jm, Oy O, for i=1,2,...,n, and j=1,2,....p.

The least squares estimator " of "~ in model (44), for triangular fuzzy variables, can be formalized as follows:
O~ 0 oo, 0™ m, 0% O,

where,

040 OXOXO T 0XOoY o, (45)

"m0 OXOXO0OXOY w0, 0% 0 OXOXO T 0X0Y (O, where,

XOijOx—0, and Y1 O0yu, Yai,.e, Yo 0, Y D 0Y1m, Yomyees, Yom O, Yr O 0Y1r, Yor ..., Yar [, are (nx1)
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response vectors such that: yi [ Xiz[J11 O Xi2 (21 ... Xip[pr, for i=1,2,...,0 Yim [ Xiz[J1m 0 Xi2[om C... 0 X ipCpm
, for i=1,2,...,n Yir 0 Xinar O XigOor 0.0 X iprr, for i=1,2,...,n

The least squares estimator of [1in model (44), for trapezoidal fuzzy variables, can be formalized as follows:
00 o00t,0%, 0%, 0% [,

where,

040 OXOXO-10XoY, o,

07 0 OXOXOMOXOYy O,

0"m O OXOXOOXOYy O

07 0 OXOXOMoXoY, o,

3.4.3 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Fuzzy Parameters
Consider the case of fuzzy simple linear regression models defined in (24), the multiple fuzzy regression model
can be generalized as follows:

~yi 0 0~o 0 0~1~Xi1 0 O~2~Xiz [...00 O~p~X ip O ;..

Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:

Y 0 X000, (44)

where, Y is an (nx1) fuzzy vector , X is an (nxp) matrix of p fuzzy predictors, and [1 is a (px1) vector of unknown
p fuzzy parameters. As a result of the lack of linearity of Fc (IR P [, “~ is reduced to a non-FRV [1. (See Gonzalez-
Rodriguez et al. (2009)).

Y, X, J,and Care formalized in matrix form as follows:

~ ~x11 0
Oy [ ~x12 O SDDlD
~ [OO~y200 ,~x21 0 ~x10pO O0~10 -
X~ 000 ~x22 0O ~x20p0 O D~D 2]
Y [ 0 Ooo0~2 00, and DDD '
U oog U oot ooud 000
00 ~yn000 ~xnCpd 00 O
NN ~xnl guttd~-p oot 00n0
~Xn2 ~

where ~yi [ Oyit, Yim, Yir O, Xij " OXiji ,XijmXijr 0 and ;" O 0y, Ojm, Oje O, for i=1,2,...,n, and j=1,2,....p.

The least squares estimator -~ of ~~ in model (44), for triangular fuzzy variables, can be formalized as follows:
OO0 oot,0"m 0% O,

where,

000 OX0X 0 toXoy, o, (45)

O'm O OXmO Xm 0010XmOYm(d,

O O OXrOXr OO10Xr0Yr [,

where,

Xi i 0 %5 0, Xm ! Oxijm 0 %5 0, X Oxije O % [, are (nxp) left, middle, and right fuzzy matrices of
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predictors. Y 10y, Yor e, Yo [, Y O 0Y1m, Yom e, Yam O, Y O 0OYar, Yor,..., Yar [, are (nx1) response vectors
such that:

yil 0 xi1lo1l O xi2l021 0.0 xipl Opl , fori=1,2,...,n

yim [0 xilm1m O xi2ZmJ2m [J...00 x fori=1,2,...,n
ipmCipm,
yir O xilr(J1r [0 xi2rJ2r O...0 x ipripr fori=1,2,....n

)

The least squares estimator of [1in model (44), for trapezoidal fuzzy variables, can be formalized as follows:
05 0 OX0X O0RoXioy, o,
D' 0 OXeOXe O OXe0Ye 0, 07V O OX vOX v 0010X vOYv O
070 OX 00X O 0X0Y, 0.
(4) The Proposed Mixed Fuzzy Crisp (MFC) Regression Model
All the fuzzy multiple regression models that have been considered in the literature handled the cases where all
the predictors are fuzzy or all are crisp.
In this section, a new multiple linear regression model which mixes the fuzzy and crisp predictors in one model
called “Mixed Fuzzy Crisp” (MFC) regression model, is proposed.The least squares approach for the new model
is derived based on positive tight data as defined in (3.2) and triangular fuzzy numbers. Also, the properties of
the resulting regression parameters are introduced in two cases: first, when the parameters are fuzzy, and second
when the parameters are crisp.
4.1 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Crisp Parameters
Consider the case where the multiple linear regression model concludes some fuzzy and some crisp predictors.
The computations will be done using triangular fuzzy number, and can applied to trapezoidal one. Assuming
centered predictors, the proposed simplest form of multiple model that contain two predictors, one is crisp and
the other is fuzzy, with crisp parameters will be as follows:
TYi D010 X D02 X 2 D 47)
“where ¥ [ Oyir, Yim, Yir [J, and “Xit O OXiar, Xiim, Xitr U, for i=1,2,...,n, Xi2 [J[Xim, Xim, Xim [J , and [Jj is a non-
fuzzy
error with mean equal zero. The regression function of model (47) will be as follows:
ECy \ "X1,X2) 0017 X1 D 2Xa.
The derivation of the least squares estimators is done by minimizing the squared distances between the
regression model and the regression function as follows:
n n
QO1,02 L) arg min [0d 2 ~yi ,01~xil (102 xi2 O arg min D O~yi ,01~xil 002 xi2 12
Oo,071 101 o,071 101
(48)
[ arg min 0 0On O~yil O001xill O01xi2 02 O0n O~yim O001xilm 002 xi2 (02 O0n O~yir 001xilr
O01xi2 02 0 [0
00,01 Oid1ig1r o1 o
By differentiating of Eq. (48) with respect to the parameters "1, and [J2, the following equations are
obtained: QUI1J0,110101 00 2xill [In Oyil DO Ixill O 02xi2002xilm Cn Cyim O 01xilmO 02xi200 2xilr
On Oyir OO1xidr 002xi200 0
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o001 g1 ooip1 oo a0l

n

OOxill Oyil D0xill 002 xi2 00 xidlm COyim O01xilmO02 xi2 00 xilr Oyir 001xilr 002 xi2 000
i1

n n n n n n n n n
O010xi21l O020xillx2 0010xi2dm O020xilmx2 O010xi21r O020xidrx2 O Oxillyil D 0xilmyim
O Oxidryir

R 1 1 ¢ e s A A A T

n n n n n n n
O0100xi211 Oxi21m Oxi2lr 00 02000xi1l x2 O Oxidmx2 O 0xidr x20 00 0xidl yil OOxidmyim O Oxilr
yir, (49)

01 0Oid1igl o in1 o o 01 01 il

and,

0QUIIUIO,010 10 2xi20n Oyil OO1IxillOO2xi2 00 2xi20n Oyim OO1xidlmO02xi2 00 2xi20n Oyir
O0Axilro02xi2 0 00

02 i1 a1 il

n n n

OOxi20yil O0O1xill002xi2 00 Oxi20yim O 0IxidlmO02xi2 00 0xi20yir OO01xilro02xi2 00 0
igl 0l 0l n n n n n n n

O010xilxi2 O010xilmxi2 O 010xilrxi2 (302 Oxi22 COxi2 yil C0xi2 yim C10xi2 yir

il i1 il il il il il (50)

Solving the equations (49) and (50), the least squares estimators, ", and ", of (I, and [] are obtained
1 2 1 2 respectively, as follows:

n n
OOxidlyil O xilm yim 0 xidr yir 0031y 0xi20

010001 n n gl (51)
O0xil2 0 xim2 [0 xir2 (03120 0xi2[0

idl idln n

OOxidlyil O xidlmyim O xilryir OO0 100xil2 0 xim2 0 xir2 [
020001 n 01, (52) X1 0xi2[]

idl

where, yir, Yim, and yir are the left, middle, and right value of yi , respectively, for i=1,2,...,n. Also, Xiu, Xiim, and
Xiir are the left, middle, and right i’s value of ~ X1 , respectively, for i=1,2,...,n.

n n n n

y-01 0 Dy Xiz O Yim Xiz O YirXiz 0/ DXz, and %1 0 00X £ Xim £ Xir 0/ Cxiz are the weighted means of ~y and

©2022 AYDEN Journals



Magda M. M. Haggag 46

il 01l ol ol
~X 1, respectively, using the observations of the crisp predictor x> as weights. All the above results can be shown
for trapezoidal fuzzy data.
4.2 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Fuzzy Parameters
Suppose in model (47) that both the parameters 1 and B2 are triangular fuzzy numbers, the MFC model will be
defined as follows:

TYi 0~ OO~ 2X 2 O (53)
where [1~1 [ 00y, ~ ~yi O Oyil, yim, yir [0, and ~xil (1 0Oxill, xilm, xilr [0, for i=1,2,...,n, [JAm ,[01r [,
02 0 0o21,02m,02r O,
Xi2 [100Xim, Xim, Xim [J, and [Jjis a non-fuzzy error with mean equal zero. The regression function of model (52)
will be
as follows:
ECy \ "X1,X2) O0~1"%1 O0~2X 2.
The derivation of the least squares estimators is done by minimizing the squared distances between the regression
model and the regression function as follows:

n ~~X ~ n

QU1,02 L arg~min~  [0d 2 O~yi 1 i1 002 xi2 00 arg~min~  O0O~yi ,O0~1~xil 00~2 xi2
2

01,02i01  01,02i01

(54)

O arg~min~ O0O0On O~yil 0010 xill 0021 xi2 02 O0n O~yim OO01Im xilm 002m xi2 02 O0n O~yir
OO0 xilr O02r xi2 (02 [0 [
Oq,02 OO0 001 101 O

By differentiating of Eq. (54) with respect to the parameters 1l , “1m ,“1r , and [z, Cam,Oar, then
equating the resulting outputs to zero, the least squares estimators, 11, 1m, "irand "21," 2m "2 rare obtained
as follows:

n n n n n n

OOxidlyil OO0 %1yl O0Oxi20 OOxidlmyim OOxIm ym OOxi20  COOXidryir 00 x1ryr DO 0Xi20

O Oidln n 101, 0" Im Oid1n n 0l 0% 1r0idln nitl (55)

OOxi21l 00 %121 O Oxi20 O0xi2im O 0x12m O 0xi2(0 OOxi2lr 0 x12r D Oxi20

igl gl 01 01 o1 ol

n n n n n n

OOxidlyil 000 OoOxi21l O OOxilmyim OO0 Tm O Oxi2dim [ Ooxilr yir oodrir
O0xi2lr [0

07200001 n i01 , 072miol n i01 , 0200001 n i1, (56) x1l

Ooxi20 xIm O00Oxi20 x1r DOxi20
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01 01 ipl

where, yii, Yim, and yir are the left, middle, and right value of yi , respectively, for i=1,2,...,n. Also, Xi1l, Xiim,

~ X1, respectively, for i=1,2,...,n. and xi1r are the left, middle, and right i’s value of

n n

Using the  observations of the  crisp predictorx2 as weightyl OO0Oyil  xi2  O/0xi2

g1l il

n n n n

ym " O 0yimXi2 0/ Oxiz 'y - O OyirXi2 0 Dxiz are the weighted means 'y, ym, 9y, respectively. Also,

igl gl 01l ol

n n n n n n

1 OO0 0xidl O/0xi2 , xdIm O O0Oxilm C/0xi2 , x1r D0 0xidr [/0xi2 are the weighted means of x11 , xIm ,
and

01 i01 i01 101 101 101 X 1, respectively. All the above results can be shown for trapezoidal
fuzzy data.

(5) A Simulation Study

To illustrate the effectiveness of the proposed MFC regression model, a simulation study is conducted to compare
the performance of MFC regression model with MF regression one. Two groups of models are introduced with
two predictors, in the first group MFC and MF models with crisp parameters are used, and in the second group
MFC and MF models with fuzzy parameters are considered as follows:

5.1 First Group

Model (1) MFC regression model: ~ yi [1001~xi1 (02 X2 [10i,  for i=1,2,...,n with the following left,
center, and right models:

yil OxillO1l 0Oxi202 fori=1,2,...,n

yim OxilmOJ1 (Oxi2002, fori=1,2,...,n

yir Oxilr(J1 Oxi20012, fori=1,2,...,n
Model (2) MF regression model: ~yi J0O1~xil J002~xi2 [J0i , with the following left, center, and
right sub-models:
yil OXiu1 OXiall2,  for i=1,2,...,n Yim OXitm[J1 OXigm 2, for i=1,2,...,n Yir OXi1r[J1 OXizr[2, fori=1,2,...,n
The triangular data set of ~ i1 [ (Xiu, Xitm, Xizr ) @nd “Xi2 [J (Xi21, Xizm , Xi2r ) are generated from the normal
distribution, and repeated 100 times, as follows:
X 1~N(0.5,2), X 1m~N(1,2), X 1r~N(2,4).

The error term is supposed to distribute as normal with mean zero and variance one, i.e.,[1~N(0,1), (11 =0.5 and

[1,=1.5.
2

The criterion used to compare the model (1) and model (2) is R, which is defined as:
R~2010dd22 [ O~y yy 0 0, (57)
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where, d 2[1~y, y"[lis the squared distance between ~y [J [yl , yc, yr (D and y" [J (ly*l , y*c, y°r [1. Also, d 2
[1~y, y[J is the squared distance between ~y [1 Oyl , yc, yr [J and ¥ Oyl , yc , yr (.
2

In Table (1), the multiple fuzzy model (MF) and mixed fuzzy crisp model (MFC) are compared using R
criterion as defined in (57). Best results are obtained for the MFC model in the form of greater values of the left
R2

R~2 is noted for small sample sizes (n=5). compared to the left MF for all sample sizes. The improve of the right
2

~

Generally, the higher values of R are obtained for smaller sample sizes of the two models MF and MFC. These
results prove the validity of the fuzzy regression for vague and small data.

Table (1): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp
(MFC) regression model with different sample sizes, n=5,10,20,50,100,200, [1;=0.5 and [1,=1.5.
n=5 Model | Left Center | Right | n=50 | Model | Left Center | Right

MF 0.9349 | 0.9496 | 0.9581 MF 0.9079 | 0.9415 | 0.9826
MFC ] 0.9703 | 0.9496 | 0.9895 MFC | 0.9567 | 0.9415 | 0.9342
n=10 | Model | Left Center | Right | n=100 | Model | Left Center | Right
MF 0.9634 | 0.9936 | 0.9927 MF 0.7296 | 0.9074 | 0.9733
MFC ]0.9899 | 0.9936 | 0.9896 MFC | 0.9068 | 0.9074 | 0.9363
n=20 | Model | Left Center | Right | n=200 | Model | Left Center | Right
MF 0.8489 | 0.9463 | 0.9771 MF 0.8052 | 0.9201 | 0.9788
MFC ] 0.9548 | 0.9463 | 0.9497 MFC ]0.9236 | 0.9201 | 0.9409

5.2 Second Group
Model (1) MFC regression model: ~y; (100~ 1~xi1 010~ 2xi2 i, for i=1,2,...,n with the following left, center,
and right models:

yil OxillO1l Ox 12021, for

i=1,2,...,n
yim Oxilm1lm COx i202mfor
, 1=1,2,...n
yir OxilrOJ1r Oxi202r,  for
i=1,2,...,n
Model (2) MF regression model: ~yi 00~ 1~xil O~2~xi2 i with the following left, center, and right

models:

Vil [ XinCOu O X121, fori=1,2,...,0 Yim OXitmim DX iomCom, fori=1,2,...,nYir OXizr1r OXi2ror, fori=1,2,...,n
The triangular data set of ~ Xi1 [1 (Xiu, Xizm, Xizr) @and “Xi2 [J (Xi21, Xiom , Xi2r ) are generated from the normal
distribution, and repeated 100 times, as follows:
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X 11~N(0.5,2), X 1m~N(1,2), X 1r~N(2,4).

The error term is supposed to distribute as normal with mean zero and variance one, i.e.,[1~N(0,1), ~ 0.5,1.0,1.5[]
and [~ 20 [10.5,1.0,1.507. The criterion R~2 1S used to compare the MFC and MF regression models.

00 [

In Table (2), as in the first group, it is found that best results are obtained for the MFC model in the form of
greater values of the left R~ 2 compared to the left MF for all sample sizes. The improve of the right R~2is noted
for

~ 2 small sample sizes (n=5). Generally, the higher values of R are obtained for smaller sample sizes for the two

models MF and MFC. These results prove the validity of the fuzzy regression for small data.
2

~

Table (2): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp

(MFC) regression model with different sample sizes, n=5,10,20,50,100,200, (111 [J0.5,1.0,1.500 and ~
[12(1010.5,1.0,1.501.

n=5 Model | Left Center | Right | n=50 | Model | Left Center | Right

MF 0.7343 | 0.8700 | 0.9942 MF 0.8233 | 0.9218 | 0.9868
MFC | 0.8366 | 0.8700 | 0.9979 MFC | 0.8757 | 0.9218 | 0.9742
n=10 | Model | Left Center | Right | n=100 | Model | Left Center | Right
MF 0.9006 | 0.9893 | 0.9947 MF 0.3830 | 0.8864 | 0.9842
MFC ]0.9421 | 0.9893 | 0.9936 MFC | 0.5826 | 0.8864 | 0.9815
n=20 | Model | Left Center | Right | n=200 | Model | Left Center | Right
MF 0.6505 | 0.9533 | 0.9910 MF 0.6378 | 0.9083 | 0.9884
MFC ] 0.8399 | 0.9533 | 0.9887 MFC ]0.7392 | 0.9083 | 0.9834

(6) Conclusions

In this paper the simple linear regression model is extended to the multiple one and estimated with the least
squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear regression model,
and the resulting model is called the mixed fuzzy crisp (MFC). Our extended model is evaluated using the
extended R~2 . Simulated data examples are applied to compare the results of MFC model with the multiple
fuzzy (MF) fuzzy

~ 2regression model using triangular fuzzy numbers. Best results are obtained in the form of larger values of R
of MFC compared to MF especially for small sample sizes. These results support using MFC model for small
data size and for large size of tight data.
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