CREATING ENHANCED REGRESSION MODELS: STRATEGIES FOR BLENDING FUZZY AND CRISP INPUTS

Tarek Mahmoud El-Sayed and Hala Samir Fawzy

Associate Professor of Statistics, Head of the Department of Statistics, Mathematics, and Insurance, Faculty of Commerce, Damanhour University, Egypt

Abstract: Linear regression models play a crucial role in capturing the linear relationships between response and predictor variables, relying on specific assumptions. These assumptions encompass the availability of sufficient data, the validity of the linear relationship, the exactness of the connection, and the presence of precise data for both variables and coefficients. However, when these assumptions cannot be met, fuzzy regression models provide a practical and flexible alternative. The concept of fuzzy linear regression was initially introduced by Tanaka et al. in 1982 and has since been extended and refined by various researchers. This paper explores the realm of fuzzy regression modeling, tracing its evolution and development through contributions from authors like Tanaka, Lee, Diamond, D'Urso, Yang, Gonzalez-Rodriguez, Choi, Yoon, and Massari. Fuzzy regression offers a robust approach to modeling relationships when traditional linear regression assumptions do not hold, making it a valuable tool in various real-world scenarios.

Keywords: Linear regression, fuzzy regression, fuzzy modeling, data relationships, modeling assumptions.

Introduction

Linear regression models are used to model the functional relationship between the response and the predictors linearly. This relationship is used for describing and estimating the response variable from predictor variables. Some important assumptions are needed to build a relationship, such as existing enough data, the validity of the linear assumption, the exactness of the relationship, and the existence of a crisp data for variables and coefficients. The fuzzy regression model is a practical alternative if the linear regression model does not fulfill the above assumptions. A fuzzy linear regression model first introduced by Tanaka et al. (1982). Their approach handled after that by many authors, such as Tanaka and Lee (1988); Tanaka and Watada (1988); Tanaka et al. (1989); Diamond (1988, 1990, 1992); Diamond and Koener (1997); D'Urso and Gastaldi (2000); Yang and Lin (2002); D'Urso (2003); Gonzalez-Rodriguez et al. (2009); Choi and Yoon (2010); Yoon and Choi (2009, 2013); D'Urso and Massari (2013).

Fuzzy regression models have been treated from different points of view depending upon the type of input and output data. There are three different kinds of models:

- \bullet Crisp input and fuzzy output with fuzzy coefficients. \square Fuzzy input and fuzzy output with crisp coefficients.
- Fuzzy input and fuzzy output with fuzzy coefficients.

The least squares method is used to estimate the fuzzy regression model. (See for instance, Diamond (1988, 1990, 1992)).

The objective of this paper is to extend the simple linear regression model to the multiple one and estimate it with the least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear regression model, and the resulting model is called the mixed fuzzy crisp (MFC).

Our extended model will be evaluated using the extended squared distance of Diamond (1988). Generated data are applied to compare the estimation results of the proposed MFC model with the usual multiple fuzzy MF regression model.

This paper will be outlined as follows. Section (2) presents some definition regarding fuzzy random variables (FRVs), fuzzy distance and possibility distributions will be introduced. In section (3) fuzzy linear regression models will be considered. The proposed mixed fuzzy and crisp (MFC) linear regression model will be introduced in section (4). Section (5) considers the numerical applications using generated and real data examples. The concluding remarks will be discussed in section (6).

Mathematical Preliminaries

Some definitions and notes will be presented in this section for the requirements of this work.

2.1	Sets	Represen	tation o	of Fuzzy	Numbers

<u> </u>
Let $K_c \square R^p \square$ denotes the class of all non-empty compact intervals of R^p and let $F_c \square R^p \square$ denotes the class of
all fuzzy numbers of R^p . Then, $F_c \square R^p \square$ will be defined as follows:
$F_{c} \square R^{p} \square \square A: R^{p} \square \square 0, 1 \square A_{\square} \square K_{c} \square R^{p} \square \square \square \square 0, 1 \square \square, \tag{1}$
where A_{\square} is the α -cut set of A if $\square \square \square 0,1\square$, and A_0 is called the support of A. (Zadeh, 1975).
For a given A, B \Box Fc \Box R \Box , and b \Box R, the followings hold:
• The sum of A and B is called the Minkowski sum, defined as: $S \square A \square B \square F_c \square R \square$. (Zadeh, 1975).
• The scalar product of b and the set A is defined as: $P \Box b \Box A \Box F_c \Box R \Box$. (Zadeh, 1975).
• A fuzzy number $D \Box F_c \Box R \Box$ is called the Hukuhara difference of A and B defined as: $D \Box A \Box_H B$, it is
shown that the Hukuhara difference is the inverse operation of addition \Box , where $A \Box B \Box D$.(Zadeh,
1975).

2.2 Left and Right (L-R) Representation of Fuzzy Numbers

Let $A \in T(R)$ is a FRV, where T(R) is a set of trapezoidal fuzzy numbers of $F_c(R)$. A trapezoidal fuzzy number A is defined as $A = Tra(A_l, A_u, A_v, A_r)$, where $A_l \in R$ and $A_r \in R$ are the left and right limits of the trapezoidal fuzzy number A, respectively. Also $A_u \in R$ and $A_v \in R$ are the left and right middle points of A, respectively, as shown in Figure (1). When

 $A_u = A_v = A_m$, a fuzzy number A will be a triangular, i.e., $A = Tri(A_l, A_m, A_r)$, as shown in Figure (2)

If A_l =a, A_u =b, A_v =c,and A_r =d, a stylized representation of a trapezoidal fuzzy number A can be represented in the following L-R form:

• A trapezoidal fuzzy number A is specified by a shape function with the following membership (Figure (1)):

Figure (1): Trapezoidal Fuzzy Number.

• When c=b, a triangular fuzzy number A is specified by a shape function with the following membership (Figure (2)):

Figure (2): Triangular Fuzzy Number 2.3 Metrics in Fuzzy Numbers Space

To measure the distance between any two fu	zzy numbers A, and B in $F_c \sqcup I$	$\kappa \cup$, an extended version of the
Euclidean (L2) distance (dE $\square A,B \square$) is defined	by:	
$d_E^2 \square A, B \square \square_0^1 \square A_L \square \square \square \square B_L \square \square \square^2 d \square \square \square$	$\exists_0^1 \Box A_U \Box \Box \Box B_U \Box \Box \Box^2 d\Box,$	(4)
where $A_L \square\square\square$ and $A_U \square\square\square$ are the lower and	d upper □-cuts of a fuzzy number	r A. (Grzegorzewski, 1998).
Bertoluzza et al. (1995) have proposed the so-c	alled Bertoluzza metric d(A,B),	which is defined as:
$d^2 \square A, B \square \square \square 0, 1 \square mid \square A \square \square mid \square B \square \square$	$\square^2 d \square \square \square_\square 0, 1_\square \square spr \square A_\square \square \square s$	$pr \square B_{\square} \square \square^2 d\square, \qquad (5)$
$A_{\underline{\square}}U \ \square \ A_{\underline{\square}}L \ A_{\underline{\square}}U \ \square \ A_{\underline{\square}}L$		
where $mid \square A_{\square} \square \square$ denotes the midpoint of A_{\square}	, and $\operatorname{spr} \Box A_{\Box} \Box \Box$ denotes the sp	read (or radius)
2 2 of A_{\square} , $\square \square^{\square} \square 0, 1 \square$. A_{\square}^{U} and A_{\square}^{L} den	ote the upper bound and lower be	ound of A, respectively.
The Hausdroff dH \square A,B \square metric for A, B \square Fo		
$d_H \square A, B \square \square \max \square \inf A \square \inf B$, $ supA \square supB \square A \square \min B \square A$	$B \square$, (6)	
where infA is the infimum value of A, and	supA is the supremum value of	of A.
The d p \Box A,B \Box metric for A, B \Box Fc \Box R \Box ,	and $1 \square p \square \square \square$ is given by:	
1		
$^{\square}1$ p 1_{-} p $^{\square}$ p $d_p \square A, \underline{B} \square \square$ inf A		(7). $\square 22$
where infA and supA are the infimum and supr		
The distance between fuzzy numbers can be d		heir membership functions. The
distance d $_p$ $\square A,B \square$ between the two fuzzy num	bers A,B is given by:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$d p \square A, B \square \square \square \square A \square \square B p dm \square p$,	for $1 \square p \square \square$,	(8)
X		
and		
$d_p \square A, B \square \square$ essential $\sup_{A} \square x \square \square_B \square x \square$	for $p \square \square$,	(9)
$X \square X$		

Original Article	
where $X \square \square$ is a Lebesgue measurable set, m is a Lebesgue The membership functions of two fuzzy numbers are the sad $_p \square A, B \square \square 0 \square_A \square x \square \square \square_B \square x \square \square \square x \square \square X \square B$ If the two functions d_1 and d_2 defined such that: d_1 and d_2 : X where X_F is a fuzzy set and $X=\{x_1,x_2,\ldots,x_n\}$ is a fuzzy rand Then:	me if the distance between them is zero, i.e., $E\Box$, $X \vdash \Box X \vdash \Box R\Box$,
$ \ \ \ \ _{d_1 \square A, B \square \square \square_A \square x_i \square \square_B \square x_i \square} , $	(10)
$\begin{array}{c} i\square1\\ \text{and}\\ n\end{array}$	
$\begin{array}{c} d_2 \square A, B \square \square \square \square_A \square x_i \square \square_B \square x_i \square \square^2, \\ i \square 1 \\ \text{Are called fuzzy distances. (Rudin, 1984).} \end{array}$	(11)
The FRVs used in this paper are considered as functions from space $(F_c(R),d_\theta)$, where $\theta>0$. The sample mean X_n and same 1	±
$X_n \square \square X_1 \square \overline{X}_2 \square \square X_n \square,$	(12) n
and $\underline{}$ \square	(13)
If X and Y are two FRVs , then the Bertoluzza covariance to $cov_{\square} \square X, Y \square \square cov_{mid} \square X, Y \square \square cov_{spr} \square X, Y \square$, 1 n $cov_{mid} \square X, Y \square \square \square 0, 1_{\square n} \square i \square 1$ mid $\square X_i \square \square mid \square \square Y_i \square 0$	(14)
(15)	
	odel: (16) etor, Y is the response variable and \square is the error term least squares estimators of \square_0 , and \square_1 are obtained by
$Q \ \Box \ arg^{min} \ \Box \ \Box Y_i \ \Box \ \Box_0 \ \Box \ \Box_1 \ X_1 \ \Box^2 .$	(17)
\square_0 , \square_1 i $\square 1$ The resulting estimators denoted by b_0 , and b_1 are as follow	/s:
$\begin{array}{c} n \\ \square \square x_i y_i \square \square n \overline{xy} \end{array}$	

Original Article		
$b_1 \ \Box^{i\Box 1}_n$, and $b_0 \Box \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(18)	
The multiple linear regression model is one:		
$Y \square X \square \square \square$,	(19)	
vector of unknown parameters to be estimated, a	ident variable, X is an $(n\times p)$ matrix of predictors, β is a $(p\times and \epsilon)$ is an $(n\times 1)$ vector of errors distributed as $N(0,\sigma^2I_n)$. The	
least squares estimator of β , denoted by b is given b $\square \ \square \ X \square \ X \square^{-1} \ X \square \ Y$,	(20)	
which is obtained by minimizing the corresponding	· ·	
$Q \square \operatorname{argmin} \square Y \square X \square^{\square \square} \square Y \square X \square \square$.	(21)	
3.2 Simple Fuzzy Linear Regression Models		
In the case of using fuzzy data, fuzzy regression Consider the following fuzzy simple linear regressions.	on models will be used to estimate the unknown parameter	·s.
$\begin{array}{c} \text{Consider the following fuzzy simple linear regress} \\ \text{$^{\circ}$y}_{i} \square \square_{0} \square \square_{1}^{\circ} x_{i} \square \square^{\circ} \end{array},$	(22)	
$y_1 \square \square 0 \square \square 1 X_1 \square \square \gamma$, $y_1 \square \square \sim_0 \square \square \sim_1 X_1 \square \square \gamma$, $(23) \gamma_1 \square \square \sim_0 \square \square \sim_1 X_1 \square \square \gamma$	` '	
	$\operatorname{nd}\Box 1$, are crisp parameters, x is a crisp variable, $\Box 0$, and $\Box 1a$	re
fuzzy parameters,		
response variable, ~ x is a fuzzy predictor. As a la Gonzalez-Rodriguez et al. (2009)).	ack of linearity of $F_c \square R^p \square$, $^{\square} \sim$ is reduced to a non-FRV. (So	ee
Gonzaicz-Rouriguez et al. (2007)).		
The regression functions of models (22), (23), and $E(Y\setminus X) \ \Box \ \Box_0 \ \Box \ \Box_1 X$,	d (24) will be approximated as follows: ~ ~ ~ ~ (25)	
$E(Y \setminus X) \square \square_0 \square \square_1 X$,	(26)	
$E(Y \setminus X) \square \square_0 \square \square_1 X$,	(27)	
trapezoidal fuzzy numbers. The derivation is appro	in models (22):(24) are derived using using triangular are exampled by optimizing the least squares criterion. In this work an extension version of that introduced by Diamond (1988) we	k
	Simple Fuzzy Regression Models Using Triangular Fuzz	ZV
Numbers		•
The least squares estimators of the parameters in mas follows:	model (22) are obtained by minimizing the least squares criterio	on
n		
$Q \square \square_0 , \square_1 \square \square \text{ arg}^{\min} \square d^2 \square^{\sim} y_i , \square_0 \square \square_1 \widetilde{} x_i \square \square_0 , \square_1 i \square 1$	(28)	
Diamond (1988) showed that there are two cases a 1 1	arising when \square \square 0 or \square \square \square 0. Using the triangular	
fuzzy number, the objective function in (28), whe	en \Box 0, will be as follows:	

Original Article
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
By differentiating of Eq. (29) with respect to the parameters \Box_1 and \Box_0 , and equating the equations by zero: $\Box Q \Box \Box 0, \Box 1 \Box \Box \Box 2xi11 \Box n \Box yil \Box \Box 0 \Box 1xi11 \Box \Box 2xi1m \Box n \Box yim \Box \Box 0 \Box 1xi1m \Box \Box 2xi1r \Box n \Box yir \Box \Box 0$
$\Box\Box 1 i\Box 1 i\Box 1 i\Box 1$
$\Box\Box 0 i\Box 1 i\Box 1 i\Box 1$
The least squares estimators, b_1^{\square} and b_0^{\square} of a_1^{\square} and a_0^{\square} respectively, are obtained as follows: a_0^{\square} and a_0^{\square} respectively, are obtained as follows:
$\square xil2 \square xim2 \square xir2 \square \square 3n \times 2$ $\square \square 1$
$b_0^{\square} \square y_{\square} b_1^{\square} x_{-}$, (31) where, y_{il} , y_{im} , and y_{ir} are the left, middle, and right value of y_i , respectively, for $i=1,2,,n$. Also, x_{il} , x_{im} , and n
x_{ir} are the left, middle, and right value of x_i , respectively, for $i=1,2,,n$. y - $\Box \Box y_{il} \Box y_{im} \Box y_{ir} \Box/3n$, and $i\Box 1$ n x - $\Box \Box x_{il} \Box x_{im} \Box x_{ir} \Box/3n$.
For the second case, where $\Box \Box \Box 0$, the objective function of (28) will be as follows: 1
Q \square \square 0, \square 1 \square argmin \square d 2 \square ~yi, \square 0 \square 1~xi \square \square 0, \square 1 i \square 1
, (32) n
and differentiating of Eq. (32), the least squares estimators, b_1^{\Box} and b_0^{\Box} of b_0^{\Box} and b_0^{\Box} of or espectively, are obtained as follows:

Original Article				
$\square \square$ xil yil \square xim yim \square b1 \square \square i \square 1 n ,	xir yir □□3n xy	(33)	
□□xil2 □ xim2 □ xir2 [i□1	□ □3n x 2			
$b_0{}^{\square} \square \mathbf{y} \square b_1{}^{\square} \mathbf{x}$.				(34)
squares estimators will b Definition (3.1)	e unique if the fuzzy	y nondegenerate	data set is tight.	t that $b_1^{\square} \square b_1^{\square}$, and the least
nondegenerated, if not al		-		=1,2,,n, the set is said to be
tight if either $b1 \square \square 0$ o set is said to be tight neg	r b1 \square \square 0 . If b1 \square ative. (Diamond (19	\Box 0 the data set $988[5]$).	is said to be tight pos	$i=1,2,,n$, the set is said to be sitive, and if $b1 \square \square 0$ the data
The least squares estima between the regression n	-			nimizing the squared distances
$Q \square \square \sim_0, \square \sim_1 \square \square$ arg min $\square_0, \square_1 i \square 1$				(35)
where $\Box_0 \Box \Box_{01}, \Box_{0m}, $		$_{11}$, \square_{1m} , \square_{1r} \square are	two triangular fuzzy	numbers.
$Q \square 0, \square 1 \square argmin \square d$ $\square \sim \sim \square \qquad \qquad \qquad 2$ $\square \square yir \square \square 0r \square \square 1r xi \square$ $\square 0, \square 1 i \square 1 \qquad \square 0, \square 1$		i □□ argmin□□	yil □□0l □□1l xi □2	2 □□yim □□0m □□1mxi □2
By differentiating of Eq. 1 1 1	(36) with respect to	the parameters	\Box 1, \Box m, \Box r and \Box 01,	\square_{0m} , \square_{0r} , the least
squares estimators, b11, follows:	b1m, b1r and b0l, b	o0m, b0r are obt	ained when $xi \ge 0$ as	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \mathbf{i}\square 1 \mathbf{n}, \mathbf{b}1\mathbf{r} \square$	$\begin{array}{c c} \square x_i y_{ir} \square n \\ \hline i \square 1n , \square \square x_i{}^2 \end{array}$	$\mathbf{y}_{\mathbf{r}}$ $ \Box \mathbf{n} \mathbf{x}^2 \ \Box \Box \mathbf{x}_{\mathbf{i}}^2 \Box \Box \mathbf{n} \mathbf{x}^2$	(37)
b0l □ y l □b1l x , b	0l □ y l □b1l x	, .b0r □ y r □b1	r x. .	(38)

when xi < 0, least squares estimators, b1l, b1m, b1r and b0l, b0m, b0r are obtained as follows:

Original Article			
$\begin{array}{c c} n & & \\ \square \square x_i y_{ir} \square \square n \underline{\star} \underline{y}_r \\ b11 \square i \square 1n & \\ \square \square x_i{}^2 \square \square n \underline{\star}^2 \\ i \square 1 & & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1n ,	(37)
b0l □ y l □b1r x ,	b0m □ y m □b1m * ,	b0r □ y r □b1l x	(38)
distances between the regres	s of the parameters in model ssion model and the regression x_i , $x_i = x_i = x_i$		mizing the squared
\square	ately fuzzy number. (See Ard 2□~yi,□~0 □□~1xi □	abpour and Tata).	umbers, and $_0$ \square_{0r} \square \square_1 \square \square \square \square \square \square 11 xil \square 2 \square \square yim \square \square 0m
0 1 0 , 0 1 i 0 , 0			
$\sim x_i$'s and $\square \sim 1$ are positive numbers.	0) with respect to the parame fuzzy squares estimators, b_{11}		, \square_{0m} , \square_{0r} , the least \square_{0r} are obtained as follows when
n n n $\square xil yil \square nxl yl \square xib11 \square i \square 1 n , b1m \square i \square 1$	il yim □□n x m y m □□ l n , b1r □ i□1 n ,	xir yir □□ n x r y r (41)	
	 im2	□n x r 2	
	☐ ym ☐b1m xm , simple least squares estimate		(42) y numbers can be easily found.

©2022 **AYDEN Journals**

3.4 Multivariate Fuzzy Linear Regression Models

3.4.1 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Crisp Parameters

Consider the case of fuzzy sin model may be formalized as		odels defined in (22), the multiple fuzzy regre	ssion
$\sim y_i \square \square_0 \square \square_1 \sim x_{i1} \square \square_2 \sim x_{i2} \square$	$\square \square_p \sim x_{ip} \square \square \sim_i$.	(43)		
Suppose using centered value		q. (43) can be written (44)	n in matrix form as follow	s:
$Y \square X \square \square \square \sim \sim$ where, Y is an (n×1) vector, unknown p crisp parameters. (See				non-FRV □
Gonzalez-Rodriguez et al. (20	009)).			
~ ~ V V □ and □am famali	and in matrix form as fo	llower.		
Y, X, \square , and \square are formalised as	zed in matrix form as fo	nows:		
$\sim y_1 \square \square$				
	~			
$Y \sim \square \square \sim y2\square\square$, $X \sim$				
	<u>-</u>		\square , and $\square \sim \square \square \square \square \sim 2\square \square$],
$\square \sim y_n \square \square$				
where $y_i \square \square y_{il}$, y_{im} , $y_{ir} \square$, are				
The least squares estimator of			les, can be formalized as t	follows:
$\square \hat{\ } \square \ \square X_l \square X_l \square \ X_m \square \ X_m \square$	$X_r \square X_r \square^{\square 1} \square X_l \square Y_l \square X_l$	$X_m \square Y_m \square X_r \square Y_r \square$,	(4	! 5)
where,				
$X_1 \ \square \ x_{ijl} \ \square \ x_{-j} \ \square \ , \ X_m \ \square \ x_{ijm}$ predictors. $Y_1 \ \square \ \square \ y_{11} \ , \ y_{21} \ ,, \ y$ such that:	$y_{nl} \square , Y_m \square \square y_{1m}, y_{2m}, \dots$	$y_{nm} \square , Y_r \square \square y_{1r}, y_{1r}$	$y_{2r},,y_{nr}$ \square , are $(n\times 1)$ resp	ponse vectors
$y_{i1} \square x_{i11} \square_1 \square x_{i21} \square_2 \square \square x_{ip}$	$_{\text{ol}}\sqcup_{\text{p}}, \text{for }_{1}=1,2,,\text{n y}$	$_{\text{im}} \sqcup X_{i1m} \sqcup_1 \sqcup X_{i2m} \sqcup$	$2 \sqcup \sqcup x_{ipm} \sqcup_p$, for $1=1,2$,,n

yir	$_{i1r}\square_{1}\square x_{i2r}\square_{2}\square\square x_{ipr}\square_{p}$, for i=	=1,2,,n	
	ast squares estimator of β in model ($\square X_l \square X_l \square X_u \square X_u \square X_u \square X_r \square$		· · · · · · · · · · · · · · · · · · ·
,	$X_{ijl} \square_{f x_{-j}} \square$, $X_u \square \square X_{iju} \square {f x}_j \square$, $X_\square \square [$		re (n×p) left, middle left, middle right, $y_{21},,y_{nl}$ \square , Y_{u} \square y_{1u} , y_{2u} ,, y_{nu} \square
, Y_{\square}	$\square y_{1\square}, y_{2\square},, y_{n\square}\square, Y_r \square \square y_{1r}, y_{2r}$		
	yil \square xi11 \square 1 \square xi21 \square 2 \square xipl \square p,	\Box for i=1,2,,n	
	yiu \square xi1u \square 1 \square xi2u \square 2 \square \square ipu \square p,	xfor i=1,2,,n	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	xfor $i=1,2,,n$	
	yir \square xi1r \square 1 \square xi2r \square 2 \square \square ipr \square p,	xfor i=1,2,,n	
Consideration Co	Multivariate Fuzzy Linear Regress der the case of fuzzy simple linear regeneralized as follows:	egression models defined in (23	ors and Fuzzy Parameters (3), the multiple fuzzy regression model (333)
Suppo	se using centered values of crisp pre	edictors, Eq. (43) can be written	in matrix form as follows:
~ Y \subseteq X ~		(44)	
p fuzzy			ers, and \square is a (p×1) vector of unknown duced to a non-FRV \square . (See Gonzalez-
□~ y1 Y~ □ □ □□□ □~yn[, \square , and \square are formalized in matrix \square	x20p00,0~000~200	
The le			ariables, can be formalized as follows:
$\square \widehat{\ }_m \; \square$	$\begin{array}{c} \vdots \\ \exists X \Box X \Box^{-1} \Box X \Box Y_1 \Box, \\ \Box X \Box X \Box^{-1} \Box X \Box Y_m \Box, \Box^{}_r \Box \Box X \Box X \Box X \Box X_{m} \Box, y_{21},, y_{n1} \end{array}$		$Y_r \square \square y_{1r}, y_{2r},, y_{nr} \square$, are $(n \times 1)$

response vectors such that: $y_{i1} \square x_{i1} \square_{11} \square$ for $i=1,2,,n$ $y_{ir} \square x_{i1} \square_{1r} \square x_{i2} \square_{2r} \square$	$\exists \ x_{i2}\square_{21}\square\square \ x_{ip}\square_{pl}, \ \ \text{for } i=1,2,,n \ y_{im}\square \ x_{i1}\square_{1m}\square \ x_{i2}\square_{2m}\square\square \ x_{ip}\square_{pr}, \ \square \ x_{ip}\square_{pr}, \ \ \text{for } i=1,2,,n$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ession Models for Fuzzy Predictors and Fuzzy Parameters regression models defined in (24), the multiple fuzzy regression models
Suppose using centered values of crisp p	oredictors, Eq. (43) can be written in matrix form as follows:
$X \cap X \cap$	1)
of fuzzy parameters. As a result of the lack Rodriguez et al. (2009)). Y, X, \square , and \square are formalized in matrix $\sim \times 11 \square$ $\square y_1 \square \square \sim x12 \square$	
X~	
where $\sim y_i \square \square y_{il}$, y_{im} , $y_{ir} \square$, $\sim x_{ij} \square \square x_{ijl}$, Γ he least squares estimator \cap of \cap in Γ \cap	$x_{ijm}, x_{ijr} \square$ and $\square_j \square \square_{jl}, \square_{jm}, \square_{jr} \square$, for i=1,2,,n, and j=1,2,,p. nodel (44), for triangular fuzzy variables, can be formalized as follows:
where, $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	(45)
	$X_r \Box x_{ijr} \Box x_j \Box$, are (n×p) left, middle, and right fuzzy matrices of

predictors. $Y_1 \square \square y_{11}, y_{21},, y_{nl} \square$, $Y_m \square \square y_{1m}, y_{2m},, y_{nm} \square$, $Y_r \square \square y_{1r}, y_{2r},, y_{nr} \square$, are $(n \times 1)$ response vectors such that:
yil \square xi11 \square 11 \square xi21 \square 21 \square \square xipl \square pl, for i=1,2,,n
yim \square xi1m \square 1m \square xi2m \square 2m \square \square x for i=1,2,,n ipm \square pm,
yir \square xi1r \square 1r \square xi2r \square 2r \square \square x ipr \square pr for i=1,2,,n
,
~
The least squares estimator of \Box in model (44), for trapezoidal fuzzy variables, can be formalized as follows: $\Box_1^{} \Box \Box X_1 \Box X_1 \Box A_1 \Box A_2 \Box A_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(4) The Proposed Mixed Fuzzy Crisp (MFC) Regression Model
All the fuzzy multiple regression models that have been considered in the literature handled the cases where all
the predictors are fuzzy or all are crisp.
In this section, a new multiple linear regression model which mixes the fuzzy and crisp predictors in one model called "Mixed Fuzzy Crisp" (MFC) regression model, is proposed. The least squares approach for the new model is derived based on positive tight data as defined in (3.2) and triangular fuzzy numbers. Also, the properties of the resulting regression parameters are introduced in two cases: first, when the parameters are fuzzy, and second when the parameters are crisp.
4.1 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Crisp Parameters
Consider the case where the multiple linear regression model concludes some fuzzy and some crisp predictors. The computations will be done using triangular fuzzy number, and can applied to trapezoidal one. Assuming centered predictors, the proposed simplest form of multiple model that contain two predictors, one is crisp and the other is fuzzy, with crisp parameters will be as follows:
$\tilde{y}_i \square \square_1 \tilde{x}_{i1} \square \square_2 x_{i2} \square \square_i$. (47) $\tilde{y}_i \square \square_1 \tilde{x}_{i1} \square \square_2 x_{i2} \square \square_i$. (47) $\tilde{y}_i \square \square_2 \tilde{x}_{i2} \square \square_i$. (47)
fuzzy
error with mean equal zero. The regression function of model (47) will be as follows:
$E(\ y \ x_1,x_2) \square \square_1\ x_1 \square \square_2 x_2.$
The derivation of the least squares estimators is done by minimizing the squared distances between the regression model and the regression function as follows:
n n
Q \square 1, \square 2 \square arg min \square d 2 \square ~yi , \square 1~xi1 \square 2 xi2 \square \square arg min \square ~yi , \square 1~xi1 \square \square 2 xi2 \square 2 \square 0, \square 1 i \square 1 \square 1 (48)
□ arg min□□□n □~yil □□1xi11 □□1xi2 □2 □□n □~yim □□1xi1m □□2 xi2 □2 □□n □~yir □□1xi1r □□1xi2 □2 □□
By differentiating of Eq. (48) with respect to the parameters \Box_1 , and \Box_2 , the following equations are obtained: Q \Box \Box 0, \Box 1 \Box 0 2xi11 \Box n \Box yil \Box 1xi11 \Box 2xi2 \Box 2xi1m \Box n \Box yim \Box 1xi1m \Box 2xi2 \Box 0 2xi1r \Box 1xi1r \Box 2xi2 \Box 0

${\square \square 1}$ il	_ _1	i□1	i□1					
□□xi11 i□1	□yil□	□ □ 1xi1	11 □ □2	xi2 □□	xi1m [□yim □	□1xi1n	$ \Box \Box 2 xi2 \Box \Box xi1r \Box yir \Box \Box 1xi1r \Box \Box 2 xi2 \Box \Box 0 $
	i211 [n □ □ 2 □ x	n xi1lx2	n □ □ 1 □ x	n i21m [n □ □ 2 □ x	n i1mx2	n □□1□xi21r □□2□xi1rx2 □□xi1lyil □□xi1myim
$\Box\Box$ xi1ry $\Box\Box$ 1 i		i□1	i□1	$i\Box 1$	i□1	i□1	i□1	$\mathbf{i}\square 1$
	xi211	n □xi21ı	n m □xi2	n 21r □□□	n □2□□□	n xi1l x2	□□xi1	mx2 □□xi1r x2□□□□xi11 yil □□xi1myim □□xi1r
yir, (49) i $\Box 1$ and,		i□1	i□1		i□1	i□1	i□1	
				n □yil	□ □ 1xiî	11□ □2x	ti2 □□	$2xi2\Box n \Box yim \Box \Box 1xi1m\Box \Box 2xi2 \Box \Box \ 2xi2\Box n \ \Box yir$
$\frac{1}{\Box^{\Box}2}$ \mathbf{i}_{\Box}		i _□ 1 n	$i_{\square}1$					
n n □□xi2□			□□2xi′	2 🗆 🗆 🗆	xi2□vir	n □□1s	zi1m∏[□2xi2 □□□xi2□yir □□1xi1r□□2xi2 □□ 0
$i \square 1$ $i \square 1$			n	n	n	n		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
								□□xi2 yil □□xi2 yim □□xi2 yir
								(50)
							es estim	ators, \Box , and \Box , of \Box , and \Box are obtained
1 2	,	1	2 resp	ectively	, as foll	ows:		
n n								
$\square \square xi11$		xi1m yi	im □ xi	i1r yir □		$\Box \Box xi2$		
□^1 □ i	•	n	n	i □ 1	•			(51)
$ \begin{array}{c c} \hline \square \square xil2\\ i\square 1 & i \end{array} $	□ xim		r2 □ □3	3 x 12□□	xi2□			
			im 🗆 xi	i1r yir □		□ xil2	□ xim2	□ xir2 □
$\Box^2 \Box i\Box$	1	n	i□1	,		(52) x	1 □ □ xi	$2\Box$
$\overline{i\Box 1}$								
•	-	•				_		of y_i , respectively, for $i=1,2,\ldots,n$. Also, x_{i11} , x_{i1m} , and vely, for $i=1,2,\ldots,n$.
n n y -□□□y		$ \begin{array}{c} \mathbf{n} \\ \mathbf{y}_{im} \mathbf{x}_{i2} \end{array} $	$ \begin{array}{c} n\\2 \square y_{ir} x \end{array} $	$_{i2}\Box^{/}\Box x_{i}$	2, and	x ₁ □ □ □	$\exists \mathbf{x}_{il} \Box \mathbf{x}_{i}$	$_{m}$ \square x_{ir} \square' \square x_{i2} are the weighted means of $\widetilde{\ }$ y and

$\mathbf{i}\Box 1 \mathbf{i}\Box 1 \mathbf{i}\Box 1 \mathbf{i}\Box 1$
\sim x 1, respectively, using the observations of the crisp predictor x2 as weights. All the above results can be shown
for trapezoidal fuzzy data.
4.2 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Fuzzy Parameters
Suppose in model (47) that both the parameters β_1 and β_2 are triangular fuzzy numbers, the MFC model will be
defined as follows:
$\tilde{y}_i \square \square \sim_1 \tilde{x}_{i1} \square \square \sim_2 x_{i2} \square \square_i. \tag{53}$
where $\square \sim_1 \square \square \square_{11}$, $\sim \text{vi} \square \square \text{yil}$, yim, yir \square , and $\sim \text{xi1} \square \square \text{xi1l}$, xi1m, xi1r \square , for i=1,2,,n, $\square \text{1m}$, $\square \text{1r} \square$, $\square \text{2} \square \square \square \text{21}$, $\square \text{2m}$, $\square \text{2r} \square$,
$x_{i2} \square \square x_{im}$, x_{im} , x_{im} , x_{im} , and \square_i is a non-fuzzy error with mean equal zero. The regression function of model (52)
will be
as follows:
$E(\tilde{y} \setminus \tilde{x}_1, x_2) \square \square \sim_1 \tilde{x}_1 \square \square \sim_2 x_2.$
The derivation of the least squares estimators is done by minimizing the squared distances between the regression
model and the regression function as follows:
$n \sim x \sim n$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Box 1, \Box 2 i \Box 1$ $\Box 1, \Box 2 i \Box 1$
(54)
□ arg~ min~ □□□n □~yil □□1l xi1l □□2l xi2 □2 □□n □~yim □□1m xi1m □□2m xi2 □2 □□n □~yir
\square 1r xi1r \square \square 2r xi2 \square 2 \square
$\square_1,\square_2\ \square\ i\square 1\ i\square 1\ \square$
·/ -
By differentiating of Eq. (54) with respect to the parameters $\Box_1 1$, $\Box_1 m$, $\Box_1 r$, and \Box_{21} , \Box_{2m} , \Box_{2r} , then
equating the resulting outputs to zero, the least squares estimators, $^{\Box}_{1}1$, $^{\Box}_{1}m$, $^{\Box}_{1}r$ and $^{\Box}_{2}1$, $^{\Box}_{2}m$, $^{\Box}_{2}r$ are obtained
as follows:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\square xi11 yi1 \square x11 y1 \square xi2 \square$ $\square xi1m yim \square x1m ym \square xi2 \square \square xi1r yir \square x1r yr \square xi2 \square$
$i\Box 1$ $i\Box 1$ $i\Box 1$ $i\Box 1$ $i\Box 1$
n n n n n
$\square xi2 \square $

i□1	$i\Box 1$	i□1										
							nt value of y _i eft, middle, a			=1,2,,n. Al f	so, X _{ill} ,	, X _{i1m} ,
n	n											
Using	the	observ	ations	of	the	crisp	predictor x2	as as	weight,	∤l □□□yil	xi2	\Box/\Box xi2
i□1	, i□1											
n	n	n	n									
\mathbf{y}_{m} \Box	$\Box y_{im} x_i$	$_2 \square^{/} \square x_i$	2 , y r 🗆 🗆	$\Box y_{ir} x_{ii}$	$_{2}\Box^{/}\Box x_{i}$	are the	weighted me	eans of	$y_1, y_m, and y_r$	respectively.	Also,	
i□1	$i\Box 1$	$i\Box 1$	$i\Box 1$									
n	n	n	n	n	n						2	
	∐ ∐xill	$\Box/\Box xi'_2$	2, x 1m	$\sqcup \sqcup \sqcup X$	ilm ⊔/	⊔xi2 , ≀	$\frac{1}{x}$ lr $\square \square \square \square xil$	r ⊔/⊔x	xi2 are the w	eighted mear	is of x	ll, xlm,
and i□1	i□1	i□1	i□1	i□1	i □ 1 v	1 rocr	activaly All	tha ak	ova raculte	can be show	n for tre	anazoidal
fuzzy (1 🗆 1	1 🗆 1	1 🗆 1	I L I A	ir, iesp	becuvery. An	ine at	Dove lesuits	can be shown	1 101 116	apezoidai
•		tion Stu	ıdv									
			•	of the	propose	d MFC	regression m	odel, a	simulation s	study is condu	icted to	compare
the per	rforman	ice of M	IFC reg	ression	model	with M	F regression	one. T	wo groups o	of models are	introdu	iced with
										ised, and in the	ne seco	nd group
			with fu	ızzy paı	rameters	s are con	nsidered as fo	ollows:	:			
	rst Gro	_			adal.				for :=1.2		- f-11-v	
	(1) MI and ric	ght mod		SSIOII III	oder. ~	y i □□1	$ \sim X_{i1} \sqcup \sqcup 2 X_{i2} $	□ □ i ,	10r 1–1,2,	,n with the	: TOHOV	ving leit,
center,	and me	giit iiiou		;11□ 1	<u>_</u> -	$\Box 2$ for	i=1 2					
			yıı L		l UXIZ	□2 ,10	or i=1,2,,n					
			yim 🗆	xi1m□	1 □xi2	$\Box 2$, fo	or i=1,2,,n					
			yir □	xi1r□1	\Box xi2 \Box 2	2, fo	or i=1,2,,n					
Model	(2) MI	F	regres	ssion m	odel:	~ yi □[□1~xi1 □□2	~xi2 [□□i , with tl	he following	left, ce	enter, and
right s	ub-mod	lels:								_		
										$_{1}\square x_{i2r}\square _{2}$, f		
	_) and $\tilde{x}_{i2} \square$	(x_{i2l}, x_{i2l})	x_{i2m} , x_{i2r}) ar	e generated t	rom th	e normal
		nd repe				ows:						
X 11∼N	(0.5,2),	$x_{1m} \sim N$	$N(1,2), \Sigma$	$K_{1r} \sim N(1)$	2,4).							
$\square_2=1$.		n is sup	posed to	o distrib	oute as r	normal v	with mean ze	ro and	variance on	e, i.e., □~N(0	$(1), \square_1$	=0.5 and
~ ²												
The cr		used to ☐1☐ dd					odel (2) is R	which (57		ıs:		

where, d $2\square \sim y$, $y^{\smallfrown}\square$ is the squared distance between $\sim y \square \square yl$, yc, yr \square and $y^{\smallfrown}\square \square y^{\smallfrown}l$, y^c, y^r \square . Also, d $2\square \sim y$, $y\square$ is the squared distance between $\sim y \square \square yl$, yc, yr \square and $y\square \square yl$, yc, $yr\square$.

In Table (1), the multiple fuzzy model (MF) and mixed fuzzy crisp model (MFC) are compared using R

criterion as defined in (57). Best results are obtained for the MFC model in the form of greater values of the left R2

 $R_{\sim 2}$ is noted for small sample sizes (n=5). compared to the left MF for all sample sizes. The improve of the right \sim 2

Generally, the higher values of R are obtained for smaller sample sizes of the two models MF and MFC. These results prove the validity of the fuzzy regression for vague and small data.

Table (1): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp (MFC) regression model with different sample sizes, n=5,10,20,50,100,200, $\square_1=0.5$ and $\square_2=1.5$.

n=5	Model	Left	Center	Right	n=50	Model	Left	Center	Right
	MF	0.9349	0.9496	0.9581		MF	0.9079	0.9415	0.9826
	MFC	0.9703	0.9496	0.9895		MFC	0.9567	0.9415	0.9342
n=10	Model	Left	Center	Right	n=100	Model	Left	Center	Right
	MF	0.9634	0.9936	0.9927		MF	0.7296	0.9074	0.9733
	MFC	0.9899	0.9936	0.9896		MFC	0.9068	0.9074	0.9363
n=20	Model	Left	Center	Right	n=200	Model	Left	Center	Right
	MF	0.8489	0.9463	0.9771		MF	0.8052	0.9201	0.9788
	MFC	0.9548	0.9463	0.9497		MFC	0.9236	0.9201	0.9409

5.2 Second Group

Model (1) MFC regression model: $\sim y_i \square \square \sim 1 \sim x_{i1} \square \square \sim 2x_{i2} \square \square_i$, for i=1,2,...,n with the following left, center, and right models:

yil
$$\square$$
xi1l \square 1l \square x i2 \square 2l, for i=1,2,...,n yim \square xi1m \square 1m \square x i2 \square 2mfor, i=1,2,...,n yir \square xi1r \square 1r \square x i2 \square 2r, for i=1,2,...,n

Model (2) MF regression model: \sim yi $\square \sim 1 \sim$ xi1 $\square \sim 2 \sim$ xi2 $\square \cup$ i with the following left, center, and right models:

$y_{i1} \square x_{i111} \square_{11} \square x_{i21} \square_{21}, \ \text{ for } i=1,2,,n \ y_{im} \square x_{i11m} \square_{1m} \square x_{i2m} \square_{2m}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}, \ \text{ for } i=1,2,,n \ y_{ir} \square x_{i1r} \square_{$
The triangular data set of $\sim x_{i1} \square (x_{i11}, x_{i1m}, x_{i1r})$ and $\sim x_{i2} \square (x_{i21}, x_{i2m}, x_{i2r})$ are generated from the normal
distribution, and repeated 100 times, as follows:

 $x_{11} \sim N(0.5,2), x_{1m} \sim N(1,2), x_{1r} \sim N(2,4).$

The error term is supposed to distribute as normal with mean zero and variance one, i.e., $\square \sim N(0,1)$, $\sim 0.5, 1.0, 1.5 \square$ and $\square \sim 2 \square \square 0.5, 1.0, 1.5 \square$. The criterion $R \sim_2$ is used to compare the MFC and MF regression models.

In Table (2), as in the first group, it is found that best results are obtained for the MFC model in the form of greater values of the left R^{2} compared to the left MF for all sample sizes. The improve of the right R^{2} is noted for

 \sim 2 small sample sizes (n=5). Generally, the higher values of R are obtained for smaller sample sizes for the two models MF and MFC. These results prove the validity of the fuzzy regression for small data.

Table (2): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp

(MFC) regression model with different sample sizes, n=5,10,20,50,100,200, $\Box_1\Box$ \Box 0.5,1.0,1.5 \Box and ~ $\Box_2\Box$ \Box 0.5,1.0,1.5 \Box .

n=5	Model	Left	Center	Right	n=50	Model	Left	Center	Right
	MF	0.7343	0.8700	0.9942		MF	0.8233	0.9218	0.9868
	MFC	0.8366	0.8700	0.9979		MFC	0.8757	0.9218	0.9742
n=10	Model	Left	Center	Right	n=100	Model	Left	Center	Right
	MF	0.9006	0.9893	0.9947		MF	0.3830	0.8864	0.9842
	MFC	0.9421	0.9893	0.9936		MFC	0.5826	0.8864	0.9815
n=20	Model	Left	Center	Right	n=200	Model	Left	Center	Right
	MF	0.6505	0.9533	0.9910		MF	0.6378	0.9083	0.9884
	MFC	0.8399	0.9533	0.9887		MFC	0.7392	0.9083	0.9834

(6) Conclusions

In this paper the simple linear regression model is extended to the multiple one and estimated with the least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear regression model, and the resulting model is called the mixed fuzzy crisp (MFC). Our extended model is evaluated using the extended $R_{\sim 2}$. Simulated data examples are applied to compare the results of MFC model with the multiple fuzzy (MF) fuzzy

 \sim ² regression model using triangular fuzzy numbers. Best results are obtained in the form of larger values of R of MFC compared to MF especially for small sample sizes. These results support using MFC model for small data size and for large size of tight data.

References

Arabpour A. R., and Tata M. (2008). "Estimating the parameters of a fuzzy linear regression model", Iranian Journal of Fuzzy Systems, 5(2), 1-19.

- **Bertoluzza C., Corral N., and Salas A. (1995).** "On a new class of distances between fuzzy sets", Mathware and Soft Computing, 2, 71-84.
- Choi S. H., and Yoon J. H. (2010). "General fuzzy regression using least squares method", International Journal Sys. Sci., 41, 477-485.
- **D'Urso P. (2003).** "Linear regression analysis for fuzzy/crisp inputs and fuzzy/crisp output data", Computational Statistics and Data analysis, 42(1), 47-72.
- **D'Urso P., and Gastaldi T. (2000).** "A least squares approach to fuzzy linear regression analysis", Computational Statistics and Data analysis, 32, 427-440.
- **D'Urso P., and Massari (2013).** "Weighted least squares and least median squares estimation for the fuzzy linear regression analysis", Metron, 71, 279-306.
- **Diamond P. (1988).** "Fuzzy least squares", Information Sciences, 46, 141-157.
- **Diamond P. (1990).** "Least squares fitting of compact set-valued data", Journal of Mathematical and Applications, 147, 531-544.
- **Diamond P. (1992).** "Least squares and maximum likelihood regression for fuzzy linear models". In: Kacprzyk J. Fuzzy regression analysis. Omnitech Press, Warsaw and Physica-Verlag, Heidelberg, 137-151.
- **Diamond P., and Korner R., (1997).** "Extended fuzzy linear models and least squares estimates", Computer Mathematics Applications, 33, 15-32.
- Gonzalez-Rodriguez, G., Colubi A., and Trutschnig W. (2009). "Simulation of fuzzy random variables", Information Sciences, 179, 642-653.
- **Tanaka H., and Lee H. (1988).** "Interval regression analysis by quadratic programming approach", IEEE Trans. Systems Man Cybrnet., 6(4), 473-481.
- **Tanaka H., and Watada J.** (1988). "Possibilistic linear systems and their application to the linear regression model", Fuzzy sets Syst.27(3), 275-289.
- **Tanaka H., Havashi I., and Watada J. (1989).** "Possibistic linear regression analysis for fuzzy data", European Journal of Operation Research, 40, 389-396.
- Tanaka H., Uegima S., and Asai K. (1982). "Linear regression analysis with fuzzy model", IEEE Trans. Systems Man Cybrnet., 12(6), 903-907.

Yang M. S., and Lin T. S. (2002). "Fuzzy least-squares linear regression analysis for fuzzy input-output data", Fuzzy Sets and Systems, 126, 389-399.

- Yoon J. H., and Choi S. H. (2009). "Componentwise fuzzy linear regression using least General fuzzy regression using least squares estimation", J. Multi.-Valued Logic, 15, 137-153.
- **Yoon J. H., and Choi S. H. (2013).** "Fuzzy least squares estimation with new operations", Advances in Intelligent Systems and Computing, 190, 193-202.
- **Zadeh L. A.** (1975). "The concept of a linguistic variable and its application to approximate reasoning", Part 1, Information Sciences, 8, 199-249, Part 2, Information Sciences, 8, 301-353, Part 3, Information Sciences, 9, 43-80. **Grzegorzewski** (1998). "Metrics and orders in space of fuzzy numbers", Fuzzy Sets and Systems, 97(1), 83-94.
- Klir G., and Yuan B. (1995). "Fuzzy set and fuzzy logic: Theory and applications. Prentice Hall, Englewood Cliffs, NJ.
- Vitale R. A. (1985). "Lp Metrics for compact, convex sets", Journal of Approximation Theory, 45, 280-287. Rudin W. (1984). Real and complex analysis, McGraw-Hill, New York.