
 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

11

Benchmarking In-Memory vs. Disk-Based Databases: A Transaction Processing

Performance Council (Tpc) Analysis

Ahmad bin Abdullah bin Hassan and Nurul Amani binti Mohd Aziz

College of Information Technology,

University Tenaga Nasional, Putrajaya

Campus, Malaysia

DOI: https://doi.org/10.5281/zenodo.13861931

INTRODUCTION

Online transactional processing-based application requires comprehensive planning prior to deployment in

regards to database performance and throughput. The ideal goal for the database system is to perform each

transaction in shortest possible response time for application-specific structured query language (SQL)

queries (Kaspi and Venkatraman, 2014; TPC, 2010). In most cases of online transaction processing (OLTP),

concurrent users of the specific module of the application can cause congestion and increase resource locking

(Faleiro and Abadi, 2011). With such constraints, it is evident that not only transactions have to be very tuned and

Abstract: Efficient online transactional processing (OLTP)

applications hinge upon meticulous planning and optimization of

database performance and throughput. The paramount objective

for any database system deployed in this context is to minimize

response times for application-specific structured query language

(SQL) queries. This necessitates a strategic approach to address

the challenges posed by concurrent user activity, which often leads

to congestion and resource locking within the system. As

highlighted by Kaspi and Venkatraman (2014) and TPC (2010),

achieving optimal performance requires not only finely-tuned

transactions but also robust features within relational database

management systems (RDBMS) to manage these demands

effectively. This study delves into the complexities of optimizing

OLTP applications, emphasizing the critical importance of

proactive planning and sophisticated database design to ensure

seamless performance amidst concurrent user interactions. By

synthesizing insights from seminal works by Faleiro and Abadi

(2011) and leveraging established methodologies, the study offers

actionable recommendations for enhancing the efficiency and

scalability of OLTP-based systems. Key considerations include

transaction tuning, resource allocation, and the integration of

advanced features within RDBMS to mitigate congestion and

streamline operations. By elucidating the multifaceted dynamics

of OLTP optimization, this study contributes to a deeper

understanding of the challenges and opportunities inherent in

deploying transactional applications in online environments.

Keywords: online transactional processing, database

performance, concurrent users, resource locking, relational

database management systems

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

12

carefully designed. RDBMS have to provide additional features to handle such requirement in a sophisticated

manner.

An in-memory database is designed to store entire data in the physical memory and update continuous changes

of the data in the memory (Delaney, 2014). Tables in an in-memory database are durable and accessible using the

same Transact-SQL (T-SQL) queries (Diaconu et al., 2013). In contrast to the in-memory database, disk-based

database store all data on the disk, while transaction data move into main memory. As with the development of

inmemory database design along with no locking feature have provided enhanced performance and optimization

of such systems that was not possible in disk-based database design (Diaconu et al., 2013).

In a comparative study of in-memory databases, performance gain for enterprise as compared to workload was

evaluated and investment is still questionable, not every type of enterprise workload can take advantage of in-

memory databases (Meyer et al., 2015). In another study of mixed workload for in-memory databases, "write"

performance in a mixed type of workload where OLTP and online analytical processing (OLAP) will have a

drawback was analyzed. It would be important to analyse the transactional workload to get more precise in-

memory implementation (Krueger et al., 2011).

Benchmarking the database is performing specific tests that are close to application transactions to evaluate its

performance. Response time and throughput are two factors to measure the performance. These benchmarking

results can be used to measure the impact and helps in future forecasting, it allows proactive monitoring of

performance bottlenecks as well. An analysis of the TPCC as Transaction Processing Performance Council

Benchmark (TPC, 2010) for online transactional processing systems was performed during the course of this

project to analyse the comparison between inmemory and disk-based database.

In-memory database design has achieve its high performance and scalability by using very efficient latchfree data

structures, multi-versioning, a new optimistic concurrency control scheme, and by compiling T-SQL stored

procedure into efficient machine code (Diaconu et al., 2013). The main hypothesis of this study is to outline the

performance differences between in-memory and disk-based database in conjunction of concurrent users and

parallelism. These two factors will cover throughput and concurrency aspect of application workload. This

comparison measured with industry standard benchmarking specification which covers all the aspects of

transactional consistency and concurrency like production applications.

The focus of the study is to analyse the comparison and review the possible improvement area of read/write

performance of disk-based database as well as the inmemory database. Database schema design is as per TPC-C

specifications, initial database schema and data size will be the same for both type of database. There were two

main test cases in observation during the course of the project. The first test case covers comparison of single and

concurrent users for the inmemory and disk-based database and the second test case includes query parallelism

setting.

RELATED WORK

A detailed comparative analysis was provided in an article (Saikia et al., 2015). This analysis covered performance

measurement of a specific application system where backend was MySQL and SQL Server, respectively. Different

types of queries that include

SELECT, INSERT, UPDATE and DELETE were performed and response time was examined; based on query

response time, performance was analyzed. MySQL and SQL Server did not use in-memory feature during the

experiment.

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

13

Another discussion was reported by Raja et al. (2006) about performance comparison between FastDB and SQL

Server. In this article, FastDB was used in-memory feature whereby disk-based database was hosted on SQL

Server. Based on TPC-C benchmarking, performance was evaluated for queries. This study compared two

different relational database management system (RDBMS) with a different technique to handle similar tasks.

In-memory databases, performance was evaluated in a study (Kabakus et al., 2016) of open source

nonconventional database systems. In open source database management systems, atomicity, consistency,

isolation, durability (ACID) consistency is reduced in order to provide high-performance transactional

throughput. During the evaluation of few open source database management systems, each standout in one type

of transactions. SQL based databases provide complete consistency that cannot be replaced by NoSQL databases.

A comprehensive study (Meyer et al., 2015) elaborated the commercial aspect of in-memory databases. The study

provides an analysis of different workload and there technological requirement whereby in-memory is suitable or

disk-based. The study evaluated that in-memory databases are not always faster as compared to diskbased

database depending on number of users and workload characteristics.

The analysis of same RDBMS from in-memory and disk-based characteristics was not analysed in any of these

studies using the same benchmarking specifications and workload. Referring to Table 1, the first three articles

discussed about different database technologies and their differences. In articles 1 and 2, in-memory feature was

discussed and compared with totally different database technology without in-memory feature. Article 4 measured

the differences between disk-based and inmemory database with enterprise applications whereby OLTP and

OLAP transactions were mixed and TPC-C benchmark was not used as well.

Table 1. Related work.

No. Article Cross database technology Comparison with in-memory

database

1

Comparative performance analysis of

MySQL and SQL Server Relational

Database Management Systems in

Windows

Environment (Saikia et al., 2015)

Yes, MySQL and SQL

Server

None of databases was measured

with inmemory feature

2

A comparative study of Main Memory

Databases and Disk-Resident

Databases (Raja et al., 2006)

Yes, FastDB and SQL

Server

Only FastDB used in-memory

feature, SQL Server used disk-based

database

3

A performance evaluation of in-

memory databases (Kabakus et al.,

2016)

Yes, SQL and NoSQL

In-memory feature was compared

with SQL and NoSQL based

databases

4

Assessing the suitability of in-memory

databases in an enterprise context

(Meyer et al., 2015)

No, however used linux

operating system

In-memory feature was compared

with different type of workload other

than TPC

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

14

Performance evaluation

Performance evaluation of database requires comprehensive defined tests to measure two main areas, throughput

and response time (Kaspi and Venkatraman, 2014; TPC, 2010). In terms of comparison of disk-based and in-

memory table design, it is important to have either same hardware or identical servers with same internal

configuration and parameters. Statistical information on performance comparison test results will provide

important information for making decisions for proactive database scalability. This evaluation helps in continuous

measurement of database landscape and pinpoint capacity growth and changes affected by new version or patches.

Performance evaluation is an ongoing process, which is informative as compared to benchmark while

configuration parameters have specific changes. Different organizations have different workloads; even within a

particular organization, these workloads represent various statistics to measure and benchmark for future cross

verifications. In general, the following are the most popular database workload types (Kaspi and

Venkatraman, 2014; Elnaffar et al., 2002):

 (1) OLTP: Online Transaction Processing (2) OLAP: Online Analytical Processing/DSS: Decision Support

System.

 Results of performance evaluation will provide important comparative aspects of different types of objects, in

the present case in-memory and disk-based tables. It allows proactive understanding, that which type of object

will be beneficial and at what type of workload, so bottlenecks can be avoided.

There are different ways of performance evaluation for databases, one as defined by software vendors or

organizations and usually pre-evaluated based on standard parameters and workload; second is as defined by TPC

(Elnaffar et al., 2002; TPC, 2010).

 Transaction processing performance council (TPC)

 The objective of TPC benchmarks is to offer relevant objective performance data to industry users. To accomplish

that purpose, TPC benchmark specifications require that benchmark tests be implemented with systems, products,

technologies, and pricing (TPC, 1994, 2010).

TPC Benchmark C (TPC-C) is used for OLTP workload. It combines read and update transactions that are more

specific to OLTP application. The performance metric statistical report generated by TPC-C is a "business

throughput" that calculates the number of processed orders per minute, concurrent orders processing simulated

based on response time. The results of performance metric represents in transactions-per-minute-C (tpmC)

(TPC, 2010).

The properties of the TPC-C as reported by the TPC Benchmark C Standard Specification Revision 5.11 are given

as follows (TPC, 2010):

(1) Is the implementation commonly available including documentation and vendor supported?

(2) Does the implementation have substantial constraints on its use or applicability that confines its use

beyond TPC benchmarks?

(3) Is there any portion or full implementation poorly incorporated into the larger product?

(4) Does the implementation take unusual benefits of the imperfect nature of TPC benchmarks (e.g.,

transactions, transaction combination, transaction concurrency and/or contention, and transaction isolation) in a

way that would not be normally applicable to the environment the benchmark represents?

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

15

(5) Is the use of the implementation discouraged by the vendor (This comprises failing to stimulate the

implementation in a way comparable to other products and technologies)?

(6) Does the implementation need complexity on the part of the system administrator, programmer or end-

user?

EXPERIMENTAL SETUP

 Microsoft SQL Server 2014, Enterprise Edition, 64 bit on Microsoft Windows Server 2012 64 bit (Microsoft,

Server 2017), installed on a machine with a core 2 quad CPUs at 1.80 GHz each, 12 GB of physical memory and

500 GB of the hard drive.

The way of dealing with the problem presented in this project was to investigate the workload specified in TPC-

C specifications and compare the performance of disk-based and in-memory design with its default settings.

Performance monitoring tool collected the information related to workload execution and later comparative

analysis was performed to understand the differences. The analytical idea includes finetuning the indexes and

changing the query parallelism to analyse the differences as well.

Two databases with the names as "TPCC_Disk_5GB" and "TPCC_Memory_5GB" were created with the TPC-C

workload. These databases will be referred to as: D5 = TPCC_Disk_5GB and M5 = TPCC_Memory_5GB.

Database size was selected to observe the significant difference in query response time and database size can fit

in main memory as well. The process of generating the data to build workload was done by "HammerDB" open

source tool which loads the necessary data for specific size and type of databases.

HammerDB open source software was used to generate two different databases. The default configurations were

left for the two databases and SQL Server along with the operating system. Exactly 10000 times stored procedures

were executed using HammerDB per user to generate reasonable transactional stress. The Microsoft SQL Server

Profiler was setup to capture the duration of each stored procedure and queries within it, CPU time to process and

disk reads and writes for each transaction.

 Database design of TPC-C specification

 TPC-C specification provides a database consisting of nine tables; the cardinalities depend upon the size of

database and data generated for a specific size. Table 2 shows the table level number of rows that are used during

the project for in-memory and diskbased databases.

Table 2. Table cardinalities.

 Table name Database size (5 GB) row count

 Customer 1,200,000

 District 400

 History 1,200,000

Item 100,000 new_order 360,000 order_line 11,997,485

 Orders 1,200,000

Stock 4,000,000 Warehouse 40

 Measurements

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

16

 The performance measurements were collected with "SQL Server Profiler" software built-in SQL Server which

was used to capture SQL events specifically stored procedure and SQL queries within stored procedures.

The performance measurements were:

(1) The stored procedure or query response (Duration in microsecond) taken to execute a single execution.

(2) The CPU time (in millisecond), the aggregated time CPU spent on the processing of specific stored

procedure or query.

(3) Disk read, that provides number of reads of 8K pages from either the cache or disk.

(4) Disk write, that provides number of writes of 8K pages to either the cache or disk.

 Performance comparison

Once data generation process is complete, the first performance test was performed with default configurations

on D5 database and similar for M5 as well. In the second step of concurrent users, analysis will take place where

additional users will be executing the transactions.

First comparison test will be with default configurational parameters against each type of database. There was

performance monitoring tool “Profiler” (Microsoft, Profiler, 2017) configured to capture statistics. These

performance statistics will cover different aspects of utilization to understand the workload and its throughput.

Once performance test with default settings is complete, analysis of performance monitoring statistics took place

and while applying additional stress using concurrent users to analyze the differences. In the third attempt of

performance analysis, maximum degree of parallelism setting (Fritchey, 2012) for Apress, Fritchey (2012) for

Simple Talk and (Nevarez, 2010) was changed to 1 from 0. This setting restricts the parallel execution plan to use

1 CPU core whereby the value of 0 which is the default and used for all available processors.

During the database performance comparison tests, each user session have executed 10,000 random and sequential

mixed transactions where each transaction duration was measured. While comprising the statistics between in-

memory and disk-based transactions, „average‟ duration of specific transaction was collected for

comparison. The main reason of choosing the

„Average‟ based analysis is disk-based transactions which use locks for data concurrency which do not exist in

in-memory database transactions (Diaconu et al., 2013). As a result, transaction duration can vary based on the

number of users and parallelism of transactions for disk-based database. In order to compare the differences

between these two types of databases „average‟ based analysis is the most appropriate.

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

17

Graph 1. Statistics of average duration against D5.

RESULTS AND DISCUSSION

The objective of this project was to investigate the TPC-C benchmark suite for Online Transactional Processing

systems; the test cases with query parallelism and concurrent users were evaluated for performance comparison.

The two techniques were used to gauge the performance between disk-based and in-memory databases. The use

of multiple concurrent users to simulate the real-time transactional load and changes in query parallel processing

settings. Read and write response time by the transactions were significantly reduced. However, delete queries

have shown additional overhead to transactions response time that has added stress on CPU for in-memory TPCC

table model.

Test case 1: Concurrent users

Five concurrent users apply additional load on the database as compared to a single user and replicate real-world

scenario as well. The combination of multiuser and multicore setting provide comprehensive statistics to review

the type of transactions that can be benefited with a specific setting.

For the disk-based database, concurrent user‟s transactions have increased the response time of each stored

procedure as SQL Server optimizer uses lock escalation strategy for disk-based databases. In one scenario,

changing the maximum degree of parallelism

(MAXDOP) setting from 0 to 1 has benefited “delivery” stored procedure.

In case of an in-memory database, concurrent users have not increased the response time of stored procedures.

However, very slight increase in response time is noticeable which is not comparative with diskbased database

where the proportion is many times more than in-memory response time.

While comparing Graphs 1 to 3 and respective tables, it is clear that in-memory transactional throughput has

outperformed the disk-based transactional throughput. However, MAXDOP setting is an important configuration

which requires thorough testing of specific workload before provisioning it to the production environment.

 Test case 2: Parallel query processing

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

18

 By default, SQL Server utilizes all available processors to utilize multiprocessor architecture. The aim of

changing parallelism setting is to compare the results acquired with available four CPUs as compared to one CPU,

so differences of query response time can be measured.

The first measurement was for the disk-based database (D5) whereby the average duration of stored procedures

was collected. Based on statistics, limiting the CPU to one has caused slowness for all stored procedures in single

user transactions. It is the same observation while in 5 concurrent users, except for “delivery” of stored procedure

that has benefited slightly (Graph 1 and Table 3).

The second measurement was for the in-memory based database (M5), based on the average duration of stored

procedure that was collected, four out of five stored procedures significantly improved the response time.

However, “delivery” of stored procedure was even slower than the disk-based database (Graph 2 and Table

 4).

After provisioning, new index on “new_order” table, the response time of “delivery” of stored procedure was

significantly reduced; for example, 6328 ms from 354719 ms in the test case of 1 user and MAXDOP 0 (Graph 3

and Table 5).

Table 4. Statistics of average duration against M5.

Stored procedure

Duration (1 User, 0

MAXDOP)

Duration (1 User, 1

MAXDOP)

Duration (5 Users, 0

MAXDOP)

Duration (5

Users, 1

MAXDOP)

 delivery 354719 187619 267056 367674

 neword 9733 8662 14237 11526

 ostat 3272 3217 5940 4666

 payment 2208 2172 3169 2644

 slev 1088 1037 1398 1168

Table 5. Statistics of average duration against M5 (with additional index).

Stored procedure
Duration (1 User 0

MAXDOP)

Duration (1 User 1

MAXDOP)

Duration (5 Users 0

MAXDOP)

Duration (5 Users 1

MAXDOP)

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

19

Analysis with T-Test

 This study demonstrated the results based on average analysis that in-memory database performance is very

significant as compared to disk-based. In order to validate the results, we have chosen to analyze the results with

T-Test statistical test. Transaction of each database was randomly generated where only number of transaction per

user was constant to 10,000 so independent unequal two-sample variance of T-Test was used to measure the

probability of differences between both type of databases. Table 6 shows that the p-value between disk-based and

in-memory is significantly lower (e.g. p-value of delivery stored procedure for one user with MAXDOP setting

to 0 was 0.000000000008930).

Conclusion

 It is important to understand the application of transactional activities before provisioning it to in-memory

database environment; the index strategy in disk-based and in-memory is different and required careful testing

and thorough review. It is an important point especially while in migration. The experiments conducted in this

project have proved that like-to-like migration will cause severe performance bottlenecks for the application that

will be using the specific database. Parallel query processing has to examine carefully before implementation.

Graph 2. Statistics of average duration against M5.

Graph 3. Statistics of average duration against M5 (with additional index).

 Table 3. Statistics of average duration against D5.

 Stored procedure

Duration (1 User, 0

MAXDOP)

Duration (1 User, 1

MAXDOP)

Duration (5 Users, 0

MAXDOP)

Duration (5 Users,

1

MAXDOP)

 delivery 8683 16179 33659 30856

 neword 13292 19419 29543 53900

 ostat 11344 14710 35717 39048

 payment 4954 7495 11596 26715

 slev 3126 31420 6874 7810

 delivery 6328 6806 14588 13604

 neword 7636 7778 18095 17992

 ostat 4326 3446 7609 7763

 payment 1975 2111 4151 4229

 slev 983 972 1934 1784

Table 6. P-value of individual transactions in comparison of both type of databases

 Stored procedure User 1, MAXDOP 0 User 1, MAXDOP 1 User 5, MAXDOP 0 User 5,

MAXDOP 1

delivery 8.9301 e-12 4.00838 e-13 8.44983 e-32 8.94195 e-11

neword 2.99396 e-22 3.57237 e-07 1.8841 e-167 8.81321 e-10

ostat 1.77215 e-07 1.33781 e-20 1.32242 e-05 2.77474 e-82

payment 9.09524 e-25 2.51412 e-32 1.6116 e-111 8.7204 e-241

slev 1.903 e-140 0.160209722 2.0144 e-18 2.46986 e-13

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

20

The experiment suggests that lightweight queries can take advantage of sequential execution and might run faster

as compared to parallel.

Due to the extensive and permanent usage of memory by the in-memory tables, database required sufficient

physical memory and other resources have to be planned. The in-memory design increases the recovery time as

well.

 RECOMMENDATION FOR FUTURE WORK

 Future work in the progression of this project topic can be:

(1) A comparison of data warehouse workload with the disk-based and in-memory design.

(2) A comparison study with other relational database management systems to review the different

transactional enhancement, especially indexes.

(3) Impact of disaster recovery feature, for example, synchronized database mirroring in conjunction with this

study.

(4) A study to review in different hardware, especially SAN and clustered environment.

CONFLICT OF INTERESTS

The author has not declared any conflict of interests.

REFERENCES

Delaney K (2014). SQL Server Internals: In-memory OLTP. Simple Talk Publishing https://www.red-

gate.com/simple-talk/books/sql-books/sqlserver-internals-in-memory-oltp/

Diaconu C, Freedman C, Ismert E, Larson P, Mittal P, Stonecipher R, Verma N, Zwilling M (2013). Hekaton:

SQL Server‟s Memory-Optimized OLTP Engine. SIGMOD pp. 1243-1254

Elnaffar S, Martin p, Horman R (2002). Automatically classifying database workloads. ACM pp. 622-624.

Faleiro J, Abadi D (2011). Rethinking serializable multiversion concurrency control. Proceedings of the VLDB

Endowment 8(11):1190-1201.

Fritchey G (2012). SQL Server 2012 Query Performance Tuning - Third Edition. Apress, Berkeley, CA. pp. 15-

57.

Fritchey G (2012). SQL Server Execution Plans - Second Edition. Simple Talk Publishing. https://www.red-

gate.com/library/sql-serverexecution-plans-2nd-edition

Kabakus A, Kara R (2016). A performance evaluation of in-memory databases. Journal of King Saud University

– Computer and Information Sciences pp. 520-525.

Kaspi S, Venkatraman S (2014). Performance Analysis of Concurrency Control Mechanisms for OLTP Databases.

International Journal of Industrial Engineering and Technology 4(4):313-318.

 Krueger J, Grund M, Boissier M, Zeier A, Plattner H (2011). "Data Structures for Mixed Workloads in In-

Memory Databases", IEEE. https://ieeexplore.ieee.org/document/5711090/

 Ayden Journal of Intelligent System and Computing, Volume 12(2), 2024 | ISSN: 2997-187X

Original Article

 ©2024 AYDEN Journals

21

Meyer R, Banova V, Danciu A, Prutscher D, Krcmar H (2015). Assessing the suitability of in-memory databases

in an enterprise context. IEEE pp. 78-89.

Microsoft, Profiler (2017). SQL Server Profiler. Retrieved October 6, 2017, From https://docs.microsoft.com/en-

us/sql/tools/sql-serverprofiler/sql-server-profiler

Microsoft, Server (2017). What's New in Windows Server. Retrieved October 6, 2017, From

https://technet.microsoft.com/enus/library/dn250019(v=ws.11).aspx

Nevarez B (2010). Inside the SQL Server Query Optimizer. Simple Talk Publishing.

Raja F, Rahgozar M, Razavi N, Siadaty M (2006). A Comparative Study of Main Memory Databases and Disk-

Resident Databases". World Academy of Science, Engineering and Technology 14:128-131.

Saikia A, Dolma S, Mary R (2015). Comparative Performance Analysis of MySQL and SQL Server Relational

Database Management Systems in Windows Environment. IJARCCE pp. 160-164.

TPC (2010). TPC Benchmark C Standard Specification Revision 5.11. URL: http://www. tpc. org/tpcc.

TPC. (1994). TPC Benchmark B, A Standard Specification, Revision 2.0.

