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1. Introduction  
Over the past several decades, there has been a disagreement about RR and PLS. Statisticians claim that RR is 

based on a well-developed mathematical foundation. PLS, on the other hand, is based on projection onto 

orthogonal variables, where the statistical properties are unknown. Therefore, RR is clearly preferable to PLS. 

Chemometricians favor the use of PLS. PLS uses projection on orthogonal vectors, which are determined in a 

similar way as at Canonical Correlation (CC). PLS uses maximization of the covariance between X- and Y- score 

vectors, while CC uses the correlation. The theory of PLS and CC are closely related. PLS has the important 

advantage that there can be more variables than samples. Validation procedures, like e.g., cross-validation and 

test sets can be used to validate the results. Graphic procedures assist experimenters in studying the data. Frank 
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et al. (1993) was one of the first papers to compare RR and PLS. Their conclusion was that RR is slightly better, 

but the difference is small. The data used was a simulated one, where data are of full rank, but the last singular 

values are small. The paper was criticized for not using data that are common in chemometrics.  Since then, many 

papers have been published on the comparison, see e.g., search in scholar.google.com. The results obtained in the 

papers are somewhat mixed. Basak et al. (2002) favor RR, while Irfan et al. (2013) and Wold et al. (1983) favor 

PLS.  

The present paper uses process and spectral data. These data are typical in chemometric work.  

In Section 2 we discuss the data that are used here. For the process data, the instrumental data X has 25 columns 

(variables). Singular values of X are of order 10-6 from the 14th to the 25th. For spectral data, the instrumental data 

has 40 columns. The last 20 singular values are very small and the last seven of X are zero. Thus, both data have 

reduced rank. However, this does not give any problems, when using RR or PLS. It is common for industrial data 

they have low or reduced numerical rank. Scaling X is important when working with low-rank data. This issue is 

discussed further.   

In Section 3 we present a brief introduction to RR. The use of the Singular Value Decomposition (SVD) of X 
gives precise computation of the RR coefficients and their variances, even for low-rank X-matrices.   

The low ‘practical’ rank causes a challenge when determining the Ridge constant. The method used to determine 

k is by minimizing the size of the residuals in Leave-one-out RR. This procedure is presented in Section 4. It 

gives Ridge constant k=2.6×10-5 for process data and 6.5×10-4 for spectral data. It is common to get a Ridge 

constant k of order 10-5 or smaller. When the Ridge constant is so small, the results of RR are very sensitive to 

the value of k. The variances of the regression coefficients obtained by OLS show that the modeling task consists 

of two parts, which are stochastically independent. One part is the fit obtained. The other part is the precision of 

the estimates. PLS is approaching both parts. This is briefly shown in Section 5.  

In Section 6 RR and PLS are applied in the analysis of process and spectral data. The estimation using all data 

gives similar results for RR and PLS. For test data, PLS and full-rank RR solutions give similar results. However, 

PLS is slightly better than RR, when low-rank solutions are used. In Section 7 it is argued for using average 

cross-validation for judging results. Denote by  the estimate of y obtained from the average of 20 cross-

validations It has become stable at the average of 20.  is the squared correlation coefficient between y and  

.  is used in judging the dimension at PLS and in comparing PLS to RR. It is also used when comparing 

results from stepwise deletion/selection of variables.  

The use of  in the evaluation of results is described closer in Section 8.   

Backward elimination of variables is important when working with industrial data. The instruments and censors 

tend to give ‘too many’ numerical values. An efficient procedure to carry out the backward elimination of 

variables for RR and PLS is presented in Section 9. There is not a significant difference between RR and PLS 

when they are applied to this procedure. However, when we study applications to test sets, there is not a clear 

picture of which method is better. When working with many variables, it is often recommended to use a forward 

selection of variables. In Section 10 we present a procedure, which has been found efficient when working with 

many variables. Here we also do not find a significant difference between RR and PLS. When applied to test sets, 

the picture is also unclear.  

In Section 11 we show that for a given Ridge constant k>0, there is a ‘noise’ matrix Z derived from (X,y), so that 

the OLS solution based on X1=X+Z gives the same solution, regression coefficients, as RR. This is used to show 

that the variances of the regression coefficients in RR are too small.  We can use the same algorithm for RR and 
PLS. Initially, the Ridge constant is estimated. Then, the same algorithm can be used for both. Graphic analysis 

of data is important in empirical work with data. Section 12 shows some common examples of graphic analysis 

in chemometrics that is carried out for RR in the same way as for PLS.  
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In experimental work using PLS, it is known that one should not work with too small score vectors. In RR a large 

number of score vectors can be small when computing the full-rank solution. Thus, there is an indication that one 

should work with low-rank RR solutions. Section 13 discusses the results of this paper. It is a challenging issue 

that RR performs almost equally well as PLS, while the theory of RR is not applicable.   
2. Data sets and scaling  
The process data are from the production of alcohol, see Höskuldsson et al. (2006). There are 25 process variables. 

The y-variable is the quality of the product, which is measured at the end of the production process. There are 

154 processes. It gives X as a 154×25 matrix and y as a 154-vector. In the case of test data, X is 123×25 and Xt 

31×25, which can be selected in many different ways. The spectral data are FTIR data in the MID-IR range, see 

Jessen et al. (2014). The FTIR instrument measures the absorbance of infrared light in the liquid, giving 1100 

values each time a sample is measured. The initial X has 1100 columns (variables). A technician suggests areas, 

where absorbance may be expected. These areas are studied and those that do not show correlation are deleted. 

Finally, we end up with 40 wavenumbers (variables) to be used in the analysis.   

The response variable is the substance that we want to determine by the FTIR instrument. 200 samples are 

measured. Thus, X is a 200×40 matrix, and y 200×1 vector. This is used in the analysis and at cross-validation. 

However, for test data X is 160×40 and Xt is 40×40. Similarly for y. The last 7 singular values of X are zero (less 

than 10-20). The 20th to 33-rd singular values are of order 10-4 to 10-3. Thus, X has a reduced numerical rank. 

Experience has shown that it is desirable to reduce the number of variables to 20 to 30. However, this is only a 
recommendation. Slightly fewer or more variables may be satisfactory.  

When working with low-rank data, it is necessary to scale the data. Scaling of columns of X and Y can be achieved 

by multiplying the matrices from the right by a diagonal matrix. The linear least squares solution is given by  

. If X and Y are scaled column-wise (by variables), it amounts to the transformations, X (XC1) 

and Y  (YC2), where C1 and C2 are diagonal matrices. The solution B can be obtained from the solution for 

scaled data, B1, as follows,  
  

This equation shows that if we are computing or approximating the linear least squares solution, we can work 

with scaled data. When we want the solution for the original data, we scale ‘back’ as shown in the equation. This 

property is also used when the approximate solution is being computed.   
The effect of scaling is better numerical precision. For a small Ridge constant, we are in RR working with a ratio 

of numbers close to zero. In PLS we are working with projections. Here the adjustment (deflation) is a difference 

between two matrices, where numbers are close to zero. Scaling secures that the numbers in the computations are 

approximately of the same size.  

Some experimental workers are critical towards scaling of data. The numerical precision at optical instruments 

(like those of FTIR) is often of the order 10-4. They argue that scaling may cause ‘zeros’ to be enlarged. But 

‘zeros’ will continue to be small after scaling. Furthermore, scaling may be necessary in order to obtain precise 

solutions. Variables that have values below detection limits must be analyzed separately.  

In the equation below it is supposed that data values are centered. E.g., for a vector xi we write  instead of 

 . This simplifies the notation. XT is the transpose of X. The squared length of a vector is  

|x| .  

3 Ridge Regression  
The OLS solution to the linear regression model   
(1) y = b1 x1 + b2 x2 + … + bK xK +  is given by  
(2) bO = (XTX)-1 XTy  

When (XTX)-1 becomes close to being singular, the solution becomes unstable. In RR it is suggested to stabilize 

the solution by adding a constant k to the diagonal elements of (XTX). The RR solution is now computed as   
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(3)   
I is the identity matrix and k the Ridge constant. It is often suggested that k should be determined by a Leave-

one-out regression. This is considered closer in Section 4.    

It is efficient to compute the regression coefficients bR by using the Singular Value Decomposition (SVD) of X, 

X=USVT. Here S is a diagonal matrix with singular values in the diagonal, and U and V have orthonormal 

columns. Then the OLS and RR solutions can be written as  
(4)    
(5)   

where f=UTy, D0 is a diagonal matrix , D1 is a diagonal matrix ( ) and di is the diagonal element 

of S, di=S(i,i).  

The standard OLS assumptions are that y has the variance Var(y)=σ2I and that the expected value of bO is  

E(bO)= . The estimate bO has the variance, . This gives   
(6)   

  

tr() is the trace function. The variance of the RR estimates is   

(7) ,   

where D2 is a diagonal matrix, ( ). This gives   
(8)   

The bias can be computed as   
(9)    

Let =VTβ. Then we get for the squared size of the bias   
  

Note, that we cannot compute the bias, when some singular values are exactly zero. This is due to that we cannot 

compute the estimate of β, bO, which is used to compute .    

We now use that for any random variable Z we have E(Z2)=Var(Z)+(E(Z))2. This gives  

 
(11)      

  
    

  
   

We get OLS regression, when k=0 and  Differentiating (11) with respect to k and let k=0, 

we get  
   

From the Tailor expansion,   

(13)     
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we see that we can always find a value of k in the neighborhood of zero so that . This is the main 

motivation for RR. By replacing  by  for some small value of k, both the variance (8) and the mean 

squared error (11) can be reduced.   
4. The Ridge constant k   
The theoretical considerations to determine k do not function well. Instead, it is recommended to determine k by 

Leave-one-out regression. The procedure is as follows.  
One sample among the N samples is left out and bR is computed for the (N-1) samples. The estimate (5) is used 

to compute the y-value of the left-out sample. This is repeated for all samples. Thus,  is the result for all 

samples and the difference (y- ) shows how well the Leave-one-out regression works. The task is to find k that 

gives the minimum value of | y- |.  

There is a unique k, kmin, where the value of |y- | is at minimum. Furthermore, for the present data, the value 

of the |y- | only increases, when k is smaller or larger than kmin. Therefore, it is easy to obtain the minimum 

value.  

 

Figure 1. Upper figure plot of |y- | versus i. k=i×10-6, i=1,2, … , 104. x-axis is the i-

values. The lower figure is plot of tr(Var(bR)), (8), versus i. Process data.  

We consider first the process data. X is here 154×25. Columns of X are scaled by their standard deviation. The 

Ridge constant is generally small for X-matrices that are not of full rank. For the process data we expect k to be 

small. We compute |y | for k=i×10-6, i=1,2,3, … , 104. The results are illustrated in Figure 1. The minimum 

value of |y- | is 0.212 and is obtained for i=26 or k=0.000026. The figure shows increasing values of |y- | for 

decreasing i less than 26 and also for increasing i-values larger than 26. The total variance (8) is 
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tr(Var(bR))=2.8961, which is unrealistically small for the 25 variables. When working with different k-values 

(e.g., for i=500 to 1000 in Figure 1), we see clear evidence that the value of tr(Var(bR)) is too small. This is 

studied closer in Section 11.  

For the spectral data X is 200×40. They are also centered and columns scaled by their standard deviation. Figure 

2 shows the results for the spectral data.  

 
Figure 2. Upper figure plot of |y- | versus i. k=i×10-5, i=1,2, … , 104. x-axis is the i-

values. The lower figure is a plot of tr(Var(bR)), (8), versus i. Spectral data.  

The smallest value of |y- |=4.4614 is obtained for k=0.000651=6.51×10-4. The value of the total variance is 

here tr(Var(bR))=25.2809. From the figure we see that by making k larger, the value of tr(Var(bR)) can be made 

smaller. For both data we get a unique value for the minimum of |y- |.   

5 PLS Regression  
We shall here briefly explain the background for PLS Regression.   

Score vectors are used as regression components. An X-score vector t is given by  

(14) t = w1 x1 + w2 x2 + … + wp xp = Xw  

Similarly, a Y-score vector is given by u=Yq. w and q are unknown weight vectors. They are determined by 
maximizing the covariance between t and u,  

(15) maximize tTu = maximize wTXYq,   s.t. |w|=|q|=1  

It can be shown that the maximization task leads to the eigensystem  
(16) XT YYT X w =  w  
When the X-score vector t has been determined, Y is projected onto it,  
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  (YTt)/tTt) t  
The estimated Y, Ŷ, based on A X-score vectors, is computed as  
(17)   

When a score vector t has been determined, X and Y are adjusted (deflated) by this score vector  

(18) X ← X – d t pT, d=1/(tTt) and p=XTt  

(19) Y ← Y – d t qT, q=YTt  

The adjustment (18) gives both orthogonal score vectors and a reduction of X by rank 1. These adjustments can 

be numerically unstable. Therefore, for low-rank data, data should be scaled.  

The weight vectors w and q can be determined by the Singular Value Decomposition of XTY,  
  XTY = U S VT, w=u1 and q =v1   
This shows that equal importance is given to X and Y. The significance of this can be seen by looking at the 

variance of the OLS regression coefficients (written for one y-variable),  

(20) Var(bO)  s2×(XTX)-1 = [yTy – yTX(XTX)-1XTy]×[(XTX)-1]/(N-K)  

 Assuming a multivariate normal distribution for data, the two terms in the squared brackets are stochastically 

independent. Therefore, both need to be addressed, when computing the regression coefficients. For further 

analysis, see Höskuldsson (2017).  
 6 Application to test sets   
Consider first the process data. Data are divided into calibration data (X1,y1) containing 123 samples, and 

test data (Xt,yt) containing 31 samples. The test data are selected as every 5th, no. 2,7,12, … . Before selecting 

test samples, we may randomize the samples and select the samples from those. However, this is not done 

here. PLS is applied to (X1,y1). The test set is (Xt,yt). The regression coefficients bP are computed for each 

dimension, 1,2, …, 25. The estimated y-values for the test data are  

XtbP. In Table 1 is shown the standard deviations of (yt - ), sp. We see that the smallest value is 

found at dimension 11, sp=0.0161.  

We carry out the analysis in Section 4 for (X1,y1). The revised numbers are k=1.8×10-5, |y- |=0.1942, and 

tr(Var(bR))=5.614. At the RR analysis, the regression coefficients are computed for each 1 to i in (5). The 

Ridge constant k=1.8×10-5 is used. The RR coefficients bR are used to estimate the yt-values by  

=XtbR. The last column in Table 1 shows the standard deviation of (yt - ), sr. At dimension 11 the 

value of sr is also 0.0162. A full rank solution also gives sr=0.0162.   
In conclusion, we can state that there is not difference between the results of PLS and RR.  
The same analysis is carried out for the spectral data. Here X1 is 160×40 and Xt is 40×40. The analysis in 

Section 4 is carried out for (X1,y1). The results are k=0.000061, |y- |=4.295, and tr(Var(bR))=45.165.  

The regression coefficients are computed at each dimension. For PLS coefficients bP we compute by 

=XtbP and the standard deviation of the residuals, (yt -       ), sp. The 40 sp-values are plotted in Figure 3 and 

drawn as a curve, ‘.-‘. Similarly for RR. The estimated yt-values are computed at each dimension by 

XtbR. sr is the standard deviation of (yt - ). It is also plotted as a curve using ‘--‘. The smallest value of 

sp is obtained at dimension 25, sp=0.2777. At dimension 25 we get for RR sr=0.2869. The residual standard 

deviation is slightly smaller for PLS. At dimension 33 the standard deviation sr is equal to 0.2769.  

In conclusion, we can state that PLS is slightly better than RR. When the full-rank solution of RR is used, 

there is for practical purposes very small difference between PLS and RR.     
7. Cross-validation procedures  
In n-fold cross-validation, samples are randomly divided into n groups. The analysis is carried out for samples in 

(n-1) groups and results are applied to the nth one. This is carried out so that each group is excluded once. Leave-

one-out regression is an example of cross-validation, where n=N. Usually, n=10 is selected. The result of cross-
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validation is an estimate yc of y, where each value of yc is estimated by 90% of the samples. We compute the 

squared correlation coefficient, , between y and yc, and the standard deviation, sc, of (y - yc). A cross-validation 

procedure can be repeated several times, e.g., 20 times, yc,1, … yc,20. The average yc=(yc,1+ …+ yc,20)/20 will be 

relatively stable. There can be uncertainties in one cross-validation, which give variation in  and sc. There can 

be a different reason for this. E.g., there can be relatively many y-values that are small and a few large ones, or 

groups in data, etc. We may need a stable estimate of yc in order to be able to distinguish between the x-variables, 

because there can be high correlations between variables like in the case of the spectral data. The average of 20 

cross-validations is normally fine.  

  

Figure 3. Plot of the standard deviations of residuals, st for PLS .-, and sr for RR --. x-axis 

is the dimension. Spectral data.  

It is important that each group in the cross-validation is representative for all data. This can be achieved in many 
ways. The samples can be mixed randomly before a cross-validation. Also, the samples can be sorted according 

to the y-values, or the first PLS score vector, or the first PCA score vector or some other criterion. Random 

selection is then based on the sorted samples, which also can be randomly mixed before cross-validation.   
8. Criterion of comparison of RR and PLS  
There are many ways to compare the two methods. The criterion chosen here is the value of  for the average yc 

of 20 cross-validation. is the squared correlation coefficient between y and yc. In the variable selection methods 

below there is given a ‘pool’ of variables. In backwards deletion we want to determine a variable that should 

leave the pool. In forward selection we want to find the variable that is to be added to the pool. In RR we start, 

for a given pool, to determine the Ridge constant k. It is determined, like shown in Figure 1, by finding the 

smallest value of |y- |. This Ridge constant is used in the cross-validations and in the application to a test set. 
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Full rank solution is computed each time we compute the RR regression coefficients in the variable selection 

methods.    

In PLS, also for a given pool, we register the value of yc, the average cross-validation, at each dimension. For the 

spectral data the dimension is from 1 to 33. The last 7 score vectors are zero. We compute  for each dimension, 

, , …, .  for PLS is the largest value of  for i=1,2, …, 33. This dimension is used for each 

deletion/selection of variables of the pool. When working with test set, PLS is carried out using this dimension 

and results applied to the test set. The disadvantage of this criterion is that -values tend to be almost equal for 

a range of dimensions. For instance, , …, , may be all almost equal, while  happen to be the largest. 

This may not be the best dimension for the test set. Therefore, we need to be careful in the interpretation of the 

results, when we compare results on test data.   
9. Backward deletions of variables    
We shall here only work with the spectral data. The engineer, who is responsible for the data, has suggested using 

40 variables (wavenumbers). The experience is that we should use between 22 and 32 variables in future analyses. 

We shall study this task by using RR and PLS.    

For cross-validation, all data are used. For test data, the data are divided into calibration data, 160 samples, and 

test data, 40 samples. Variables are eliminated one by one, starting with a pool of 40 variables and continuing 

until 15.  

The following magnitudes are computed.  

1) The number of variables in the pool, initially 40 variables  

2a) For RR, the RR constant is determined using all variables in the pool. It is used at cross-validations and at test 

set, for each variable that is deleted from the pool.  

2b) For PLS determine the dimension to use in the analysis  

3) For all variables in the pool: Delete one variable from the pool, and compute 4) to 9) without this variable 
by RR   

4) The squared correlation coefficient, R2, between y and =XbR, bR the RR coefficients   

5) The standard deviation, s=|y- |/(N-1)½  

6)  between y and yc, where yc is the average over 20 cross-validations  

7) sc=|y-yc|/(N-1)½  

8)  between yt and , where =Xtb, b is bR   

 
9) st=|yt- |/(N-1)½  

10) A variable is deleted from the pool that gives the largest values of  Steps 2) to 10) are repeated until 15 

variables in the pool.   

The steps of the computations are  

0. Initially, (2a) to (9) are computed for the 40 variables. Initial pool consists of all 40 variables. This gives 

the first line in Table 2.  

1a. In the case of RR, compute the Ridge constant k for variables in the pool.  

1. Delete a variable from the pool. 4) to 9) are computed without this variable. This is carried out for all 

variables in the pool. RR is used in each regression. Same k is used for all deleted variables.  

2. Delete the variable from the pool, which gives the largest value of , the squared correlation coefficient 
between y and the average of 20 values of yc.  

3. If there are variables left in the pool, go to 2a) for RR (and 2b) for PLS).   

Note, that the RR constant k is computed before the cross-validations and use of test set. This value of k is used 

in the computation of bR for each cross-validation and each analysis, when a variable is deleted from the pool.   
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Table 2 shows the results for RR. Initially, =98.684%. The largest value of  is obtained at 31 variables, where 

=98.787% and sc=0.3206. Thus, RR suggests to use 31 variables in the future. We see that there is relatively 

small variation in the numbers before and after deletion of a variable. The same procedure is applied for PLS. In 

the analysis 4) to 9) the dimension used in PLS is the one found before deleting a variable. This dimension is used 

in the computation of 4) to 9), when a variable is deleted. In 4) to 9) the PLS estimates bP‘s are used. We get a 

table for PLS that is similar to Table 2. It is not shown here. The largest value of  is 98.771%, which is found 

at  

29 variables. And sc=0.3226. The numbers for  and sc are very close to each other for RR and PLS. One cannot 

state if one is better than the other.   

Table 2. Backward deletion of variables, RR     

1)  2)  3)  4)  5)  6)  7)  8)  9)  

0  0  0,000375  99,254  0,2514  98,684  0,3343  99,236  0,2785  

40  15  0,000375  99,240  0,2537  98,716  0,3301  99,257  0,2751  

39  8  0,000640  99,237  0,2542  98,730  0,3283  99,261  0,2747  

38  30  0,000421  99,239  0,2539  98,734  0,3277  99,260  0,2747  

37  23  0,000422  99,236  0,2543  98,738  0,3272  99,248  0,2767  

36  40  0,000372  99,227  0,2559  98,756  0,3247  99,157  0,2929  

35  16  0,000352  99,227  0,2559  98,753  0,3253  99,159  0,2927  

34  20  0,000359  99,202  0,2600  98,779  0,3216  99,027  0,3153  

33  3  0,000383  99,202  0,2600  98,786  0,3207  99,028  0,3152  

32  13  0,000385  99,196  0,2610  98,774  0,3224  99,041  0,3126  

31  36  0,000527  99,195  0,2611  98,787  0,3206  99,044  0,3123  

30  5  0,000513  99,195  0,2611  98,775  0,3223  99,043  0,3124  

29  39  0,000500  99,195  0,2611  98,769  0,3230  99,043  0,3124  

28  10  0,000500  99,195  0,2611  98,772  0,3226  99,043  0,3124  

27  32  0,000501  99,188  0,2623  98,773  0,3225  99,056  0,3108  

26  38  0,000829  99,171  0,2650  98,766  0,3234  99,087  0,3051  

25  33  0,000823  99,141  0,2697  98,753  0,3251  99,100  0,3039  

24  31  0,002614  99,104  0,2755  98,716  0,3298  98,960  0,3275  

23  22  0,003089  99,088  0,2780  98,713  0,3301  98,863  0,3422  

22  1  0,002228  99,069  0,2808  98,710  0,3306  98,875  0,3385  

21  29  0,001071  99,019  0,2883  98,664  0,3363  98,602  0,3790  

20  25  0,001067  98,954  0,2977  98,588  0,3458  98,736  0,3593  

19  11  0,000675  98,882  0,3077  98,493  0,3573  98,491  0,3924  

18  24  0,000149  98,881  0,3079  98,517  0,3544  98,473  0,3949  

17  7  0,000422  98,592  0,3453  98,225  0,3877  98,342  0,4139  

16  9  0,000353  98,054  0,4060  97,535  0,4570  98,482  0,3998  

15  35  0,000195  97,585  0,4523  97,009  0,5034  98,131  0,4414  
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Figure 4. The values of st were obtained for RR and PLS at the backwards deletion of 

variables.  .- is those from PLS, -- from RR.  

Consider now the residual standard deviation for the test set, st, given by 9). Figure 4 shows the values of st for 

both RR and PLS, which is obtained at each deletion, from 1 to 26 (40 down to 15) deleted variables. When cross-

validation is used, RR suggests that 9 variables should be deleted, while PLS 11. For these numbers the values of 

st are close to equal. Otherwise, there is some difference between RR and PLS. RR gives smaller values from 1 

to 7 and 12 to 18 deleted variables, while PLS gives smaller values for 19 and more are deleted. As mentioned 

above, the application of PLS to test set is sensitive to the dimension used in PLS. Therefore, further study is 

needed in order to find out, which is better, RR or PLS, when applied to test set. This is not considered here.   
10 Forward selection of variable   
Similar analysis like in in previous section can be carried out for forward selection of variables. The steps are: 

Select the variable having the largest correlation coefficient with y. Initially the pool of variable consists  

of this variable.  
1a. In case of RR, compute the Ridge constant k for variables in the pool. 1b. 

Determine the dimension to use for PLS for variables in the pool.  

For each variable not in the pool, compute 4) to 9) of previous section  

0. Add a variable to the pool of variable. Carry out cross-validation using the variables in the pool and this 

variable. Carry this out for all variables not in the pool, one at a time. PLS/RR is used in each regression.  

1. Add the variable permanently to the pool, which gives the largest value of , the squared correlation 

coefficient between y and average yc.  

2. If there are variables left not on the pool, go to 1a. for RR and 1b. for PLS.  
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In all cross-validations the average of 20 cross-validations is used. Like at backward deletion of variables, the 

Ridge constant is computed and the dimension used in PLS are computed for a given pool of variables and before 

selection of variables. We get as output from the computations that is similar to Table 2, except the they start with 

smaller values of . It is not shown here.   

In Figure 5 is shown the values of  , the upper figure, and of , the lower figure.  

When selecting 27th or later variables, the values of  are practically the same for PLS and RR.  and  

increase in the beginning faster for PLS than for RR. The largest values of  are obtained around 30 variables 
for both PLS and RR. Thus, almost the same conclusion is obtained for forward selection of variables as for 

backwards deletion. This holds for both PLS and RR.   

 In conclusion, the difference between PLS and RR is small. For the test set there are differences until around 26 

selected variables. However, as mentioned earlier, there are some uncertainties in the results for test set, when 

PLS is used due to the criterion used, the maximal -value.   

  

  
Figure 5. Upper figure -values obtained for RR and PLS at forward selection of variables. Lower 

figure the -values for test set. .- is those from PLS, -- from RR.  

  
11 RR estimation as OLS   
When working with different analysis of RR, we get a clear impression that the total variance of RR, (8), is too 

small. We shall consider this closer.   

The variance matrix for the OLS regression coefficients is . When there is collinearity in 

data, the precision matrix, , tends to be large. Even if the precision matrix is far from being singular, there 

may be problems in using OLS. This is the case, when the there are many variables and correlation among all or 

most of the variables, OLS may give wrong or misleading results, like e.g., declare a variable significant, although 

it is not. For the process data, this happens already at 10 variables. (It is a serious problem in industry that popular 
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program packages in statistics use OLS as a standard for regression analysis). By replacing the estimate of bO by 

, we get both smaller regression coefficients and smaller variance matrix for bR.   

A question is: Is there a matrix Z containing small values derived from (X,y), so that the RR estimate bR is equal 
to the OLS estimate, when using X1=X+Z instead of X? This is an important question, because if affirmative, 
would allow us to evaluate the RR solution by using the theory of OLS. In RR we search for a good value of k, 
but treat the results as if the value is fixed and given beforehand.   

The answer is in fact affirmative. For a given value of k, we can use (X,y) to determine Z so that for X1=X+Z we 
have  

(21)  , where d is some constant   

It follows from (21) that the OLS solution using X1 is the same as the one of RR. When k is small, the values in 

Z are also small. The values in Z can be viewed as ‘noise’ values derived from (X,y), which are added to X. The 

derivation of Z is somewhat technical. Instead of going through the details, we show in Box 1 a Matlab program 

that carries out the computations. First, the matrix Q contains y and X. W is an orthogonalization of Q. C is lower 

triangular. B2 is determined so that B1
TB1+B2

TB2=I. The matrix Z=A×B is the desired matrix.  

The chol.m subroutine requires that the matrix is non-singular. An error message is given, if the matrix is too 

close to being singular. The subroutine can be modified to allow zero diagonal elements in F.  

From the algorithm it can be seen that the number of samples needs to be large enough, (N-1)>2K, where X 
is N×K.  

Let us summarize the procedure. For a given value of the Ridge constant, k, a ‘noise’ matrix Z is added to X 

so that the OLS solution using  

X1=X+Z gives the same estimates of the regression coefficients as RR. Z has the property that it is orthogonal 

to y, ZTy=0.   These results are illustrated by the spectral data, where the first 19 variables are used. (More 

than 19 variables gives an error message in Matlab, when using chol.m).  

The upper figure in Figure 6 shows the values of |y- | around the minimum value.  is computed by 

Leave-one-out regression as explained earlier. The minimum is found at k=0.0001476. For this value of k, 

the matrix X1 is found. The sizes of OLS precision matrix for X1 and similar for RR (divided by s2) are plotted 

in the lower figure of Figure 6.  
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Figure 6. Upper figure a plot of |y- | versus k. k=i×10-7, i=1,2, … , 5000. x-axis is the i-values. 

Lower figure are plots of (22) and (23). Upper curve for the revised OLS, (22), lower curve for RR, 

(23).  

  

We have  is the revised OLS solution. The upper curve is computed from   

(22)    
The lower curve from  
(23)    

Here (  are the singular values of X. The difference between (22) and (23) is   

(24)    
Thus, (23) is always smaller than (22). The RR approach is somewhat not satisfactory. A linear model is assumed, 

y~N(X ,σ2I), which might not be correct, because a low rank X places some restrictions on . The RR method 

does not use this model. It uses the same way (regularization) of computing the solution, but uses the model to 

compute the variances of the solution.   

When working with data, it is clear that the OLS variances from the modified X are more reliable than those of 

RR. Thus, there is a clear indication of that the variances of the RR solution are too small. The size of the 

difference is given by (24).    
12 Graphic analysis of data in RR   
The same algorithm can be used for RR as for PLS, see Höskuldsson (2015). The only difference is that at entry 

we use S=XTX+kI as covariance matrix instead of S=XTX for PLS. This allows us to carry out graphic analysis 
of data for RR in much the same way as for PLS.   

We shall use spectral data for illustration. The Ridge constant is k=0.0001476. The upper most two figures in 

Figure 7 show the y-values plotted against the first two score vectors. The explained y-variation for the first X-

score vector t1 is 33.73% and for the second t2 it is 36.25%. A line through (0,0) is inserted (b=(yTt1)/(t1
Tt1) for 

the first line and b=(yTt2)/(t2
Tt2) for the second line). We use the scatter plots to study linearity, extreme samples 

and special features in data like scatters at small y-values (compared to detection limit) or large y-values 

(sometimes instrumental error). We may get a score vector that gives a better fit than the one t1 given here. 

However, the present score vector t1 is both extracting variation for X and explaining variation of y. This explains 

also that t2 describes more of the variation of y than t1.   

Note, that the score vectors are not orthogonal for RR. However, here they are very close to being orthogonal, 

because the Ridge constant is so small.   

In the middle two figures we consider the plots of loading vectors. We study the grouping of variables and the 

sizes of the loadings. The basis for the interpretation is the case, when S=XTX is the correlation matrix and the 

rank is two. In this case . If points are far from zero and next to each other, we say that the 

associated variables are closely related. The points are shown with variable numbers to ease the interpretation. 

The reliability of this way of looking at the loading plots depends on the percentage explained. The higher they 

are the more reliable it is. For low percentages, like here, it is for guidance only.   

The lowest two figures show scatter plots of score vectors. The first score vector t1 explains 56.50% of the 

variation of X, t2 25.79% and t3 5.54%. We are looking for special features in the X-samples, like for instance, 

groups, gaps and dependence between the score vectors. For process data, e.g., we sometimes see ‘movements’ 

of points. By numbering the points, we can see when and how samples ‘develop’. Here again, we use the 

percentage as guidance for the conclusions. For instance, if we detect groups in data, when we look at e.g., the 

plot of the 6th score vector versus the 5th, the interpretation may not be reliable, if the percentages are small, say 
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less than 1%. We validate signals of grouping in data by appropriate cross-validation. It should be emphasized 

that in chemometrics the study of the score plots is important for learning to know the variation in data.   

Same figures can be made by a PLS analysis. The figures are almost alike, because the Ridge constant is so small, 

k=0.0001476.  

  

Figure 7. Ridge Regression. Upper most two plots are plot of y versus the first two score vector, t1 and 

t2. The middle two plots are scatter plots of the loading vectors, p2 vs p1 and p3 vs p1. The lowest two 

figures are the scatter plots of score vectors, t2 vs t1 and t3 vs t1.  

  13. Discussion  
The data sets that have been used here are typical in chemometric work. The process data have a 25 variables and 

practical rank 13. The spectral data have 40 variables and rank around 19.   

When comparing RR with PLS we use the average of 20 10-fold cross-validation. The average cross-validated y, 

yc, is a stable measure. When RR and PLS are used for these data, we do not find significant difference. The 

values of  and sc at average cross-validation are approximately equal. The reason for that the values obtained 

by RR and PLS are almost equal, is that the values of RR, when SVD of X is used, do not change at the dimension 
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used for PLS, as shown in Table 1. When applied to test set, which is 20% of the data, the values of  and st are 

often similar. However, these numbers can be different for these two methods. RR and PLS were applied to 

stepwise selection/deletion of variables, which is based on average cross-validation. Here we find that RR 

performs equally well as PLS. When applied to test sets, there can be some difference in the results of RR and 

PLS. In PLS the largest value of  may not be appropriate for test sets.   

In industry, selection of variables is an important issue. yc, which is the average of yc,i’s from 20 cross-validations, 

is a stable magnitude. By using it in variable selection/deletion, we get efficient methods for finding the variables 

that should be used.   

A test set that is 20% of data is relatively large. It is known that for spectral data there are uncertainties in the X-

values. Therefore, we may expect slightly different results for different test sets. RR can be carried out by the 

same algorithm as PLS. The Ridge constant k is added to the diagonal of the covariance matrix before analysis. 

It is the experience in chemometrics that one should not use the full rank solution. This indicates that one should 

study the feasibility of using a solution that is not of full rank. It is a disadvantage of RR to use terms in (5) that 

have very small or zero singular values, or small score vectors.   

We see from Figure 1 that the total variance (8) can be very sensitive to the choice of k. Here, a small increase in 

k may give (8) close to zero. It is shown that RR amounts to adding small ‘noise’ values to X. The OLS solution 

of the modified X gives the same solution as RR. The theory of OLS confirms the impression from the empirical 

work that the total variance (8) is too small.    
14. Conclusion  
We have studied RR and PLS for data that are typical in chemometric work. There is a unique Ridge constant 

k, that gives the minimum value of |y- |, where  is obtained by Leave-one-out RR. The Ridge constant k 

obtained in this way is typically very small. When maximal value of  for the average of 20 cross-validations, 

yc, the results obtained by RR and PLS are close to equal. This also holds, when RR and PLS are used for variable 

selection/deletion, and dimension of PLS are at the maximal values of . It is shown that RR amounts to adding 

small ‘noise’ values to X. OLS applied to the modified X gives the same solution as RR. The theory of OLS tells 

us that the theory of RR cannot be applied to data. We find RR efficient in modelling chemometric data. It also 

efficient in variable selection/deletion procedures. However, we cannot recommend using the theory of RR in 

analyzing the parameter estimates.   
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