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1. Introduction  

Fluxgate magnetometer sensors have gradually been widely used in the field of high-precision magnetic field 

measurement due to their advantages such as high resolution, simple structure, small size and good temperature 

stability [1-3]. Fluxgate magnetometer has gradually become the key equipment in magnetic inspection, magnetic 

field monitoring, earth magnetic field measurement, ship degaussing and other fields. However, in the actual use 

process, due to the limitation of the manufacturing technology, there are various types of errors between the three 

orthogonal axes of the fluxgate magnetometer, which makes a large deviation between the measured value of the 
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sensor and the actual value, and seriously affects the measurement accuracy and reliability [4]. Therefore, it is 

necessary to correct the magnetometer before use to reduce the measurement error.  

At present, considerable research has been carried out at home and abroad to solve this problem, which is mainly 

divided into two ideas in terms of methods: vector correction and scalar correction. In document [5], a vector 

compensation method is proposed to suppress the sensor measurement error by building a system composed of a 

cross magnetometer array, magnets, steel blocks and a zero-magnetic turntable. Vector correction needs to be 

based on a zero-magnetic turntable to monitor the attitude of the magnetometer in real time. This kind of 

correction method has high accuracy, but the experimental steps are cumbersome, which is more suitable for 

sensor correction in the laboratory environment. In contrast, scalar correction measures the magnetic field change 

data under different postures by placing the sensor in a uniform magnetic field, and estimates the correction 

parameters to achieve the purpose of error correction. Compared with vector correction, this kind of method has 

less computation and greatly simplified experimental steps, so it has become a more common method at present. 

In reference [6], by analyzing the non-orthogonality error of the three-component fluxgate sensor, the 

mathematical model description is given, and a correction method based on the real coded genetic algorithm is 

proposed. The disadvantage of this kind of algorithm is that its correction effect is greatly affected by the initial 

parameters. In reference [7], a magnetic field component gradiometer error correction method based on function 

linked neural network and least square method is proposed by establishing a measurement error model. The 

calculation process of this method is complex and the accuracy is not high. Aiming at the problems of low 

accuracy and large influence of initial value in the current magnetometer correction methods, in this paper, we 

propose an axis flux gate error correction method based on particle filter algorithm. Particle filter algorithm is an 

algorithm based on the spatial model of dynamic system and has a good filtering effect on non-linear systems. It 

has unique advantages in processing the state and parameter estimation of non-Gaussian non-linear systems [8].  

The rest of this paper is organized as follows: Section 2 introduces the fluxgate magnetometer error model. Section 

3 introduces the research methods. Section 4 verifies the effectiveness of the proposed method through simulation 

and experiments, and discusses the results. The fifth part gives the conclusion. 

2. Fluxgate error model  

Fluxgate error model for fluxgate magnetometers, the measurement error mainly consists of zero bias error, scale 

coefficient error and three-axis non orthogonal error. Zero bias error is also called translation error, which is 

equivalent to superimposing an additional magnetic field on three orthogonal axes. Assuming that the zero bias 

errors of the three axes of the magnetometer are ex , 
e
y and ez , the zero bias error can be expressed by formula (1):  

Bxo =Bx +ex 

 
B

yo =
B

y +
e
y                                (1)  

 

Bzo =Bz +ez 

Where Bxo , 
B

yo and Bzo are the measured values of the magnetometer, and Bx , 
B

y and Bz  are the actual values of the 

background uniform magnetic field.  

The scale coefficient error is an error caused by the inconsistent sensitivities of the three measuring axes of the 

sensor. Assuming that the ratio of the output of the magnetometer to the standard value are k
1 , 

k
2 and k

3  

respectively, the scale coefficient error of the magnetometer can be expressed by formula (2):  

Bxo =kB1 x 
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B
yo =

k
2

B
y                                 (2)  

 

Bzo =k3Bz 

In order to make the output of the three-axis magnetometer meet the requirements of the Cartesian coordinate 

system, the three axes must be installed orthogonally to each other. However, the actual threeaxis magnetometer 

is not completely orthogonal due to the limitation of processing and installation accuracy. Then the output of the 

three-axis magnetometer is not the three magnetic field components in the orthogonal coordinate system, and 

must be compensated. Let the three axes of the three-axis magnetometer be X , Y , Z . The outputs are B
x , 

B
y , 

B
z . 

Take the orthogonal coordinate system 
X

o , 
Y

o , 
Z

o and X , Y , Z coincide with the coordinate origin, Z axis coincides with Zo   , Y axis is coplanar with O , Yo 

and Zo . α, β, γrespectively represent the included angle between Y axis and Yo axis, X axis andO ,Yo , 
X

o plane, the 

projection of X axis on the O , Yo , 
X

o plane and Xo . Based on coordinate transformation:  

Bxo =Bx   cos(β)cos(γ) 

 

Byo =By cos(α)+Bx cos(β)sin(γ)                      (3)  

 

Bzo =Bz +By sin(α)+Bx sin(β) 

Since the non-orthogonal angle of the magnetometer is very small,α ,β , andγ are small and close to zero, it can 

be assumed that:   

sin(α) =α 

 

sin(β) =β                                 (4)  

 sin(γ) =γ cos(α)=cos(β)=cos(γ)=1                         (5)  

Derived from formula (3-5):  

Bxo =B x  

Byo =By +γBx 

 
Bzo =Bz +αBy +βBx                            (6)  

In summary, the instrument error of the triaxial magnetometer is composed of three parts: triaxial verticality error, 

scale coefficient error and zero bias error, and the three types of error characteristics are synthesized, and the 

instrument error model of the actual triaxial magnetometer is finally established as shown in equation (7):  

Bxo =kB1 x +e x  

Byo =k2By +k2γBx +ey 

 

Bzo =k3Bz +k3αBy +k3βBx +ez                       (7)  

By Equation (7), the triaxial magnetometer error model can be simplified to:  
Bo =AB+E

                                 (8)  

Where A and E are shown as:     
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 k1 

 

A= k2γ 

 k3β 

Equation (8) is derived to:  

0 

k2 

k3α 

0  

 

0 

 

k3   

ex  

  

E = ey  

 e
z                          (9)  

B=A−1(Bo −E)
                              (10)  

Equation (10) is the magnetometer error correction model, after the correction parameters, you can find the matrix 

A and E, and then convert the measured value of the sensor into the actual magnetic field value, to achieve the 

purpose of sensor error correction. Therefore, the problem of error correction of triaxial magnetometer can be 

transformed into an estimation problem of 9 correction parameters, and particle filtering algorithm is a commonly 

used method for estimating parameters of dynamic systems. 

3. Research Methodology  

3.1. Particle filtering algorithms  

To describe a dynamic system, define the state transition equations and measurement equations for the system as 

follows:  

xk = fk (xk−1, wk−1) 

 

                         zk = hk (xk ,vk )                              (11)  

Where fk and hk are the state and output equations, zk is the measured value, xk is the state variable, wk and vk are the 

mutually independent state and measurement noise.  

Bayesian estimation theory can be based on the existing quantitative measurements z1:k = [z
1, 

z
2,..., 

z
k ] and solving 

for the estimates of the system state xk by two processes, prediction and update, or it can be considered as solving 

for the posterior probability density p(x
k | 

z
1:k ) of xk . The process of recursive estimation can be divided into two 

steps as follows.  

(1) Prediction process. The prior probability density of the state variables x
k is calculated by the following 

equation:  

p(xk | z1:k−1) =∫ p(xk | xk−1) p(xk−1 | z1:k−1)dx k−1 

                 (12)  

(2) Update process. Use the measured values z1:k and the following updated formula to calculate the posterior 

probability distribution:  

p(zk | xk ) p(xk | z1:k−1 ) 

p(x
k | 

z
1:k ) = 

 
p(zk | z1:k−1)                         (13)  

However, this recursive method for computing posterior probabilities is only a theoretical method and is difficult 

to compute directly in practical situations, but it is possible to solve for suboptimal solutions by means of particle 

filtering algorithms.  

The basic idea of the particle filtering algorithm is to construct a sample-based posterior probability  

{ i i }N 

density function, use the set of N particles x0:k , 
w

k i=1 to represent the posterior probability density function p(x
0:k | 

z
1:k ) , and based on the above set of particles, the posterior probability density of the moment k can be 

approximated as:  
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1   i 

p(x0:k | z1:k ) ≈ pˆ(x0:k | z1:k ) = δ(x0:k −x0:k ) 

 
N                  (14)  

Assuming that the set of particle set x
0:

i   
k obeys a normal distribution, as N tends to infinity, pˆ(x

0:k | 
z
1:k ) 

approximates p(x
0:k | 

z
1:k ) , combined with equation (14), we can get:  

N N 
ˆ[g(x0: )] 1   g(x )w g(x k )w

~
k
i 

E 
N   i=1 i=1                  (15)  

i 1 P(z1:k | x0:i k ) p(x0:i k   ) wk = ⋅   i 

 
N p(z1:k )π(x0:k | z1:k )                          (16)  

Since the true posterior distribution of the system is difficult to obtain, a probability density function of a known 

distributionπ(x
k | 

z
k ) is to be used as a substitute. Since the measurements at k are independent of the measurements 

at k−1, by applying Bayes' theorem, we can get:  

π(xk | zk ) =π(xk | xk−1, zk )π(xk−1 | zk−1)                     (17) Therefore, it is possible to sample in the probability 

density function π(x
k | 

x
k−1, 

z
k ) and then merge with the previous sample set to form a new sample set, and each 

particle in the sample set has its weights, called importance weights. A simple but effective sampling method is 

to sample from the transfer probability density of the state variable, i.e., let π(x
k | 

x
k−1, 

z
k ) = p(x

k | 
x
k−1) , then the 

importance weights are:  

wki = wki −1 p(zk | xki )                              (18)  

3.2. Fluxgate error correction method based on particle filter  

Equation (10) is the magnetometer error correction model, when the three axis magnetometer measures in the 

area where the geomagnetic field is evenly distributed, the ideal output value is a strictly orthogonal geomagnetic 

field tripartite value. When the three axis magnetometer moves in space for attitude transformation, it gets 

different three component values, but they have the same modulus, which is the principle of "attitude 

independence" calibration. Using this principle, a systematic model for the error parameter estimation of the three 

axis magnetometer is established by taking the square of the geomagnetic vector mode measured by the three axis 

magnetometer as the systematic observation measurement.  

The nine correction parameters to be estimated k
1, 

k
2 , 

k
3 , α, β, γ, e

x , 
e
y , 

e
z are used as the state variables of the 

system, and the parameters to be estimated remain unchanged during calibration, so the particle filter estimation 

system's equation of state for the error parameters of the three axis magnetometer is:  

X (k) = Xˆ (k −1) 

                              (19)  

The whole correction process mainly includes three parts: experimental acquisition of measurement data, particle 

filter system parameter estimation, and error correction. The specific steps of this method are as follows:  

(1) Select the area without external interference magnetic field for experiments, and use the scalar 

magnetometer and the three-axis vector magnetometer to obtain the measurement value of the surrounding 

magnetic field;  
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(2) Bring the measurement values of the two magnetometers in (1) into the equation of state and the 

measurement equation of the particle filtering process, iteratively update the particle weights, and obtain the 

optimal estimate of the system state, which is the parameter estimate of the final correction model;  

(3) Substitute the estimated parameter values and the measured magnetic field data into the error 

compensation model of Equation (10) to obtain the corrected geomagnetic field vector measurements.  

4. Simulation and experiment  

4.1. Simulation  

In order to verify the effectiveness of the proposed correction method, the randomization method is used to 

generate the three-axis magnetic field data of any attitude in space. Assuming that the geomagnetic field is B , 

then under the ideal three axis orthogonal coordinate system XYZ , the three axis components are:  

Bx =Bcos(θ1)cos(θ2) 

 

By =Bcos(θ1)sin(θ2) 

 
Bz =Bsin(θ1) 

 
                          (20)  

Where, -  .  

Assuming that the geomagnetic field is 50,000nT, 200 sets of θ1 , 
θ
2 are generated using the randomization method. 

After substituting into equation (20), we can yield 200 sets of three axis orthogonal magnetic field values at 

different attitudes, and the resulting three axis magnetic field values are shown in Figure 1-3.  
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The maximum total field of the magnetometer is 51671 nT, the minimum value is 48386 nT, and the change 

amplitude reaches 3285 nT. As can be seen from Figure, since the shafts of the triaxial flux gate sensor are not 

orthogonal, the output total field value fluctuates widely when the sensor attitude changes, so the error correction 

  

Figure 1: Magnetometer X - axis output value   

  

Figure 2: Magnetometer Y - axis output value   

  

Figure 3: Magnetometer Z - axis output value   
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of the measured value of the sensor is required. 50000nT is used as the target measurement value, and the model 

parameters are updated and iteratively updated based on the particle filtering algorithm, and the estimation results 

of each correction parameter are shown in Table 1.  

Table 1: Calibration parameter estimation results  

  zero offset value   sensitivity   Non-orthogonality   

X-axis   -70.7557   0.9703   -0.0172   

Y-axis   -57.4770   1.0126   0.0223   

Z-axis   42.5479   1.0189   -0.0253   

The sensor correction parameter is substituted (9) to calculate the three-axis output value of the modified sensor. 

Figure 4 shows the comparison of the total field value before and after the sensor correction, and Figure 5 shows 

the error curve after correction. After correction, the total field output value at any attitude is about 50000nT. The 

maximum total field value is 50030 nT, the minimum value is 49998 nT, and the change is reduced to 32 nT.  

 
4.2. Experimental results and error analysis.  

The error correction experiment of a certain type of three axis fluxgate sensor is carried out, and the placement 

attitude of the flux gate sensor is arbitrarily changed in a relatively stable geomagnetic field environment, and the 

three axis output of the sensor is tested and the results are recorded, and the three axis magnetic field value is 

shown in Figure 6-9.  

  

Figure 4:  Contrast curve of the total field value after correction   

  

Figure 5: Total field value error curve after correction   
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Figure 6: Magnetometer X-axis output value  

 
The maximum total combined magnetic field is 49642nT, the minimum is 48830nT, and the variation amplitude 

reaches 812nT. Due to the small fluctuation of the local geomagnetic field, there is a certain error in the magnetic 

field measured by the uncorrected flux gate sensor, which must be corrected by the error correction algorithm. 

Based on the particle filtering algorithm, the model parameters are updated and iteratively updated, and the 

estimated results of each correction parameter are shown in Table 2.  

Table 2: Calibration parameter estimation results  

  zero offset value   sensitivity   Non-orthogonality   

X-axis   156   0.9303   0.00490   

  
Figure 7: Magnetometer Y - axis output value   

  
Figure 8: Magnetometer Z - axis output value   

  
Figure 9: Magnetometer total field value   
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Y-axis   122   1.0126   0.00025   

Z-axis   88   1.0189   0.00092   

The sensor correction parameter is substituted (10) to calculate the three-axis output value of the modified sensor. 

Figure 10 shows a comparison of the total field values before and after the sensor correction, and Figure 11 shows 

the corrected error curve. After correction, the total field change at any pose is reduced to 18nT.  

 
The simulation results show that the proposed correction method can correct the sensor errors to a large extent, 

although there are still some errors.  

It can be seen from the experimental results that through the error correction model, the measured ambient 

magnetic field strength value of the sensor at different attitudes tends to be stable, the oscillation amplitude of the 

geomagnetic field measurement value is significantly reduced, and the test error caused by the sensor 

manufacturing process is effectively compensated within a certain range. Through the analysis of the test method 

and test data, when the error correction experiment is carried out, there is still a certain magnetic interference 

noise around the sensor, which affects the accuracy of the test data. In addition, the target value in the error 

correction algorithm has a certain deviation from the real geomagnetic field value, which also affects the accuracy 

of the correction result. In the subsequent test, the magnetic field value measured by the optical pump can be 

  

Figure 10: Contrast curve of the total field value after correction   

  

Figure 11: Total field value error curve after correction   
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considered to replace the calculation, improve the accuracy of the correction, and reduce the magnetic interference 

of the surrounding environment, so as to establish an ideal error correction test environment and improve the 

accuracy of error correction.  

5. Conclusion  

In order to correct the test error caused by the non-orthogonality of the coordinate system of the triaxial flux gate 

sensor, the inconsistency of the electrical performance of each axis and the zero point drift, an error correction 

method based on particle filter parameter estimation is proposed. This method can be used to correct the test error 

caused by the above three reasons at the same time, so that its performance is closer to the ideal triaxial flux gate 

sensor. The actual geomagnetic field measurement experiment shows that after the error correction of the sensor 

output by the proposed method, the measurement accuracy of the geomagnetic field of the triaxial flux gate sensor 

has been significantly improved. Therefore, the error correction method of the triaxial flux gate sensor proposed 

in this paper is effective, and it can provide a reference for the practical application of fluxgate magnetometer 

with high accuracy request.  
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